Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14
|
|
- Lidia Lisowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14
2 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny z ruchem wskazówek zegara jest ujemny (β < 0) XX LO (wrzesień 2016) Matematyka elementarna Temat #5 2 / 14
3 Miara kąta Miara kąta Definicja Miarą łukową kąta w kole o promieniu r nazywamy stosunek długości łuku s do promienia α = s r Jednostką miary łukowej jest radian. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 3 / 14
4 Miara kąta pełny obrót (360 ) XX LO (wrzesień 2016) Matematyka elementarna Temat #5 4 / 14
5 Miara kąta pełny obrót (360 ) α = s r = obwód koła r = XX LO (wrzesień 2016) Matematyka elementarna Temat #5 4 / 14
6 Miara kąta pełny obrót (360 ) α = s r = obwód koła r = 2πr r = XX LO (wrzesień 2016) Matematyka elementarna Temat #5 4 / 14
7 Miara kąta pełny obrót (360 ) α = s r = obwód koła r = 2πr r = 2π rad XX LO (wrzesień 2016) Matematyka elementarna Temat #5 4 / 14
8 Miara kąta pełny obrót (360 ) α = s r = obwód koła r = 2πr r = 2π rad miara stopniowa miara łukowa 90 π π 270 3π π XX LO (wrzesień 2016) Matematyka elementarna Temat #5 4 / 14
9 Miara kąta pełny obrót (360 ) α = s r = obwód koła r = 2πr r = 2π rad miara stopniowa miara łukowa 90 π π 270 3π π XX LO (wrzesień 2016) Matematyka elementarna Temat #5 4 / 14
10 Funkcje dowolnego kąta Funkcje trygonometryczne dowolnego kąta Definicje Jeżeli punkt P (x, y) jest punktem (różnym od punktu (0, 0)) na końcowym ramieniu kąta α, r = x 2 + y 2 jest promieniem wodzącym punktu P, to sin α = y r cos α = x r tg α = y x (x 0) ctg α = x y (y 0) XX LO (wrzesień 2016) Matematyka elementarna Temat #5 5 / 14
11 Funkcje dowolnego kąta Wzory redukcyjne Prosta reguła f, g : sin, cos, tg, ctg g(α ± x) = ±f(x) dla α = π, 2π : f = g, czyli funkcja bez zmian α = π 2, 3π 2 : sin cos, tg ctg Znak ± przed f(x) zależy od kąta α ± x W pierwszej wszystkie dodatnie W drugiej tylko sinus W trzeciej tangens i contangens A w czwartej cosinus XX LO (wrzesień 2016) Matematyka elementarna Temat #5 6 / 14
12 Tożsamości Tożsamości trygonometryczne sin 2 α + cos 2 α = 1 tg α ctg α = 1 sin (2α) = 2 sin α cos α cos (2α) = cos 2 α sin 2 α sin (α + β) = sin α cos β + cos α sin β cos (α + β) = cos α cos β sin α sin β XX LO (wrzesień 2016) Matematyka elementarna Temat #5 7 / 14
13 Tożsamości Sinus i Cosinus sumy i różnicy Ze wzorów na sinus i cosinus sumy można wyprowadzić wiele innych wzorów sin (u + v) = sin u cos v + cos u sin v cos (u + v) = cos u cos v sin u sin v XX LO (wrzesień 2016) Matematyka elementarna Temat #5 8 / 14
14 Tożsamości Sinus i Cosinus sumy i różnicy Ze wzorów na sinus i cosinus sumy można wyprowadzić wiele innych wzorów sin (u + v) = sin u cos v + cos u sin v cos (u + v) = cos u cos v sin u sin v sin (u v) = sin u cos v cos u sin v XX LO (wrzesień 2016) Matematyka elementarna Temat #5 8 / 14
15 Tożsamości Sinus i Cosinus sumy i różnicy Ze wzorów na sinus i cosinus sumy można wyprowadzić wiele innych wzorów sin (u + v) = sin u cos v + cos u sin v cos (u + v) = cos u cos v sin u sin v sin (u v) = sin u cos v cos u sin v cos (u v) = cos u cos v + sin u sin v XX LO (wrzesień 2016) Matematyka elementarna Temat #5 8 / 14
16 Tożsamości Zamiana iloczynu na sumę i sumy na iloczyn sin u sin v = 1 2 [cos (u v) cos (u + v)] cos u cos v = 1 2 [cos (u v) + cos (u + v)] sin u cos v = 1 2 [sin (u + v) + sin (u v)] cos u sin v = 1 2 [sin (u + v) sin (u v)] XX LO (wrzesień 2016) Matematyka elementarna Temat #5 9 / 14
17 Tożsamości Zamiana iloczynu na sumę i sumy na iloczyn sin u sin v = 1 2 [cos (u v) cos (u + v)] cos u cos v = 1 2 [cos (u v) + cos (u + v)] sin u cos v = 1 2 [sin (u + v) + sin (u v)] cos u sin v = 1 2 [sin (u + v) sin (u v)] sin α + sin β = 2 sin sin α sin β = 2 sin cos α + cos β = 2 cos cos α cos β = 2 sin ( α+β 2 ( α β 2 ( α+β 2 ( α+β 2 ) cos ) cos ) cos ( ) α β 2 ( ) α+β 2 ( α β 2 ( α β 2 ) sin ) ) XX LO (wrzesień 2016) Matematyka elementarna Temat #5 9 / 14
18 Funkcje zmiennej rzeczywistej Funkcje trygonometryczne XX LO (wrzesień 2016) Matematyka elementarna Temat #5 10 / 14
19 Funkcje zmiennej rzeczywistej Funkcje trygonometryczne Definicje Funkcja sinus, f(x) = sin x, gdzie x jest miarą łukową kąta. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 10 / 14
20 Funkcje zmiennej rzeczywistej Funkcje trygonometryczne Definicje Funkcja sinus, f(x) = sin x, gdzie x jest miarą łukową kąta. Funkcja cosinus, f(x) = cos x, gdzie x jest miarą łukową kąta. Dziedziną obu funkcji jest D f = R, przeciwdziedziną W f =< 1, 1 >. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 10 / 14
21 Funkcje zmiennej rzeczywistej Funkcje trygonometryczne Definicja Funkcja tangens, f(x) = tg x, gdzie x jest miarą łukową kąta. Dziedziną funkcji jest D f = R { π 2 + kπ}, przeciwdziedziną W f = R. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 11 / 14
22 Funkcje zmiennej rzeczywistej Funkcje trygonometryczne Definicja Funkcja tangens, f(x) = tg x, gdzie x jest miarą łukową kąta. Dziedziną funkcji jest D f = R { π 2 + kπ}, przeciwdziedziną W f = R. Definicja Funkcja cotangens, f(x) = ctg x, gdzie x jest miarą łukową kąta. Dziedziną funkcji jest D f = R {kπ}, przeciwdziedziną W f = R. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 11 / 14
23 Równania Równania trygonometryczne przykład sin x = 1 2 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 12 / 14
24 Równania Równania trygonometryczne przykład sin x = 1 2 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 12 / 14
25 Równania Równania trygonometryczne przykład sin x = 1 2 Rozwiązanie XX LO (wrzesień 2016) Matematyka elementarna Temat #5 12 / 14
26 Równania Równania trygonometryczne przykład sin x = 1 2 Rozwiązanie x = π 6 + 2kπ x = 5π 6 + 2kπ, k Z XX LO (wrzesień 2016) Matematyka elementarna Temat #5 12 / 14
27 Równania Przydatne równości sin α = sin β α = β + 2kπ α = π β + 2kπ XX LO (wrzesień 2016) Matematyka elementarna Temat #5 13 / 14
28 Równania Przydatne równości sin α = sin β α = β + 2kπ α = π β + 2kπ cos α = cos β α = ±β + 2kπ XX LO (wrzesień 2016) Matematyka elementarna Temat #5 13 / 14
29 Równania Przydatne równości sin α = sin β α = β + 2kπ α = π β + 2kπ cos α = cos β α = ±β + 2kπ tg α = tg β α = β + kπ, α, β π 2 + kπ ctg α = ctg β α = β + kπ, α, β kπ XX LO (wrzesień 2016) Matematyka elementarna Temat #5 13 / 14
30 Nierówności Nierówności trygonometryczne Przykład sin x > 1 2 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 14 / 14
31 Nierówności Nierówności trygonometryczne Przykład sin x > 1 2 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 14 / 14
32 Nierówności Nierówności trygonometryczne Przykład sin x > 1 2 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 14 / 14
33 Nierówności Nierówności trygonometryczne Przykład sin x > 1 2 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 14 / 14
34 Nierówności Nierówności trygonometryczne Przykład sin x > 1 2 x ( ) π 6 + 2kπ, 5π 6 + 2kπ XX LO (wrzesień 2016) Matematyka elementarna Temat #5 14 / 14
MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego
Bardziej szczegółowoFunkcje trygonometryczne
Funkcje trygonometryczne Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej
Bardziej szczegółowoMatematyka kompendium 2
Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoTRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych
TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie
Bardziej szczegółowoMatematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje
Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje
Bardziej szczegółowo8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.
WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM
Bardziej szczegółowoFunkcje trygonometryczne
Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami
Bardziej szczegółowoMatematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2
Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu
Bardziej szczegółowoFunkcje trygonometryczne
Funkcje trygonometryczne Piotr Rzonsowski Teoria Definicja. Sinusem kąta ostrego α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej sin α = b c. Cosinusem kąta ostrego
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoFunkcje trygonometryczne
Funkcje trygonometryczne Piotr Rzonsowski Teoria Definicja. Sinusem kąta ostrego nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej sin = b c. Cosinusem kąta ostrego nazywamy
Bardziej szczegółowoTRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO
TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie
Bardziej szczegółowoRównania i nierówności trygonometryczne
Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoTrigonometria. Funkcje trygonometryczne
1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych
Bardziej szczegółowo(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
Bardziej szczegółowo1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Bardziej szczegółowoMATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Bardziej szczegółowoKLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
Bardziej szczegółowo7. Funkcje elementarne i ich własności.
Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne
Bardziej szczegółowoFunkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Bardziej szczegółowoIII. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Bardziej szczegółowoBlok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Bardziej szczegółowoZadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Bardziej szczegółowoFunkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska
Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.
Bardziej szczegółowoWykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28
Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Bardziej szczegółowoWYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
Bardziej szczegółowoIndukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Bardziej szczegółowoFunkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:
1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe
Bardziej szczegółowoROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Bardziej szczegółowoSIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji
SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(
Bardziej szczegółowoJolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Bardziej szczegółowoPrzykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1
Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu
Bardziej szczegółowoRepetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY
Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Bardziej szczegółowoII. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
Bardziej szczegółowoZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3
ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.
Bardziej szczegółowoFunkcje trygonometryczne w trójkącie prostokątnym
Funkcje trygonometryczne w trójkącie prostokątnym Oznaczenia boków i kątów trójkąta prostokątnego użyte w definicjach Sinus Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek przyprostokątnej
Bardziej szczegółowoPrzedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Bardziej szczegółowoKup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Bardziej szczegółowo1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
Bardziej szczegółowo2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoPoziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
Bardziej szczegółowo? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Bardziej szczegółowoROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.
ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną
Bardziej szczegółowo1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Bardziej szczegółowoOstatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Bardziej szczegółowoTreści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoSkrypt 19. Trygonometria: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
Bardziej szczegółowopostaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
Bardziej szczegółowoLiteratura podstawowa
1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.
Bardziej szczegółowoRównania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze
Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
Bardziej szczegółowoDział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bardziej szczegółowoTreści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
Bardziej szczegółowoTematy próbnego pisemnego egzaminu dojrzałości z matematyki
Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,
Bardziej szczegółowoROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURA
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI LUBELSKA PRÓBA PRZED MATURA DLA KLAS TRZECICH POZIOM PODSTAWOWY GRUPA I 1 STYCZNIA 011 CZAS PRACY: 170 MINUT Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba
Bardziej szczegółowoDefinicje funkcji trygonometrycznych kąta ostrego
1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.
Bardziej szczegółowoWykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w
Bardziej szczegółowoZakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY
MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania
Bardziej szczegółowoWymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać
Bardziej szczegółowoKLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
Bardziej szczegółowoFunkcja f jest ograniczona, jeśli jest ona ograniczona z
FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden
Bardziej szczegółowo1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
Bardziej szczegółowoEkoenergetyka Matematyka 1. Wykład 7. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Ekoenergetyka Matematyka 1. Wykład 7. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY będą niepuste. Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy przyporządkowanie
Bardziej szczegółowoPropozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
Bardziej szczegółowoBAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Bardziej szczegółowoDr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy
Bardziej szczegółowoMATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 1. TRYGONOMETRIA STOPIEŃ UMIEJĘTNOŚCI UCZNIA Dopuszczający Zna i
Bardziej szczegółowoTreści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowo1. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC = 2.
Funkcje trygonometryczne. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC =..Rozwiążtrójkątprostokatnymającdaneprzyprostokątne
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Bardziej szczegółowoFUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoWYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
Bardziej szczegółowoWzory funkcji cyklometrycznych (kołowych)
Wzory funkcji cyklometrycznych (kołowych) Mateusz Kowalski www.kowalskimateusz.pl 19.07.01 Streszczenie Wzory funkcji cyklometrycznych wraz z wyprowadzeniami. 1 A co to za funkcje? Funkcje cyklometryczne
Bardziej szczegółowoProgram zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych
Bardziej szczegółowoPrzykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.
Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(
Bardziej szczegółowoWykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0
Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II
Bardziej szczegółowoMATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
Bardziej szczegółowo