Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)
|
|
- Eugeniusz Szczepański
- 5 lat temu
- Przeglądów:
Transkrypt
1 Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a X ozaczamy przez C(X). Wprost z defiicji widać, że każdy operator T, dla którego dim Im T <, jest zwarty. Łatwo też zauważyć, że C(X) jest przestrzeią liiową Uwaga. Każdy operator liiowy T B(X) jest słabo-słabo ciągły Lemat. Jeśli T jest odwzorowaiem zwartym a X, to dla każdego ciągu (x ) x w 0 = T x 0. W takim razie każde odwzorowaie zwarte jest ciągłe, a więc C(X) B(X). Przy dodatkowych założeiach implikację moża odwrócić Twierdzeie. Jeśli H jest ośrodkową przestrzeią Hilberta, to operator T przeprowadzający ciągi słabo zbieże w zbieże jest zwarty. Mamy też 0.4. Twierdzeie. Niech X będzie refleksywa. Wtedy T C(X), wtedy i tylko wtedy gdy T : B X jest słabo-moco ciągły. Dowód. Niech T : B X będzie słabo-moco ciągły. X jest refleksywa, więc kula B X w jest zwarta, a stąd obraz T (B) jest zwarty w ormie. Zatem operator T jest zwarty. Druga implikacja ie wymaga założeia refleksywości. Niech T : X X będzie zwarty. Wtedy T (B) jest zbiorem zwartym i topologie słaba oraz ormowa a tym zbiorze się pokrywają. Jako że każdy operator liiowy jest słabo-słabo ciągły, T odwzorowuje B w sposób słabo-moco ciągły Lemat. Jeśli T C(X) i T T, to T C(X), a więc przestrzeń liiowa C(X) jest domkięta Twierdzeie. Jeśli T C(X) i A B(X), to AT C(X) i T A C(X). Iymi słowy C(X) jest dwustroym domkiętym ideałem w B(X). Zauważmy mimochodem, że c 0 jest ideałem w l. Aalogia ta ie jest, jak zobaczymy, przypadkowa Lemat. Jeśli T jest odwzorowaiem całkowym a przestrzei Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) T f(x) = k(x, y)f(y) dy, to T jest odwzorowaiem zwartym o ormie T k Lemat. Jeśli T jest odwzorowaiem a przestrzei Hilberta H spełiającym waruek T e 2 <, to T jest zwarty i T 2 T e Lemat. Jeśli T C(X), to T C(X ). M Dowód. Rozważmy przestrzeń C(T (B)) fukcji ciągłych a zwartym domkięciu obrazu kuli jedostkowej B X. Fukcjoały z kuli jedostkowej B X staowią domkiętą podprzestrzeń fukcji jedakowo ciągłych w C(T (B)), a więc podzbiór zwarty. Odwzorowaie C(T (B)) f f T C(B) jest ciągłe, więc obraz B przez to odwzorowaie jest zwarty. Jeśli zaurzymy X w zwykły sposób w C(B), to obraz te jest rówy T (B ).
2 Lemat. Przypuśćmy, że X ma bazę Schaudera {e }. Ozacza to, że dla każdego x mamy jedozacze przedstawieie Wówczas x = m(x) = sup N α (x)e. α k (x)e k jest ormą zupełą rówoważą ormie. Co więcej, fukcjoały α k są ciągłe (względem obu orm). Dowód. Zauważmy, że m(x) < dla każdego x, bo ciąg sum częściowych szeregu Schaudera jest zbieży, a więc ograiczoy. Jedorodość i własość trójkąta są oczywiste. Mamy też x = α j (x)e j = lim N α k (x)e k m(x). N Mamy też j=1 α k (x) e k m k (x) + m k 1 (x) 2m(x), więc fukcjoały α N są ciągłe względem ormy m. Norma m jest także zupeła. Aby to udowodić, przypuśćmy, że (x ) jest ciągiem Cauchy ego względem ormy m. Wtedy dla każdego k ciąg α k (x ) jest zbieżym ciągiem liczbowym. Niech a k = lim α k (x ). Dla dowolego ε > 0 istieje 0, takie że dla, m 0 i dowolego N a stąd dla dowolego M < N α k (x )e k α k (x m )e k ε, α k (x )e k Przechodząc do graicy z m, otrzymujemy α k (x )e k a więc α k (x m )e k 2ε. a k e k 2ε, a k e k 2ε + α k (x )e k, skąd już łatwo wioskujemy, że szereg a ke k jest zbieży w ormie i reprezetuje wektor x 0, taki że m(x x 0 ) = sup N α k (x ) a k e k 2ε dla 0. Zatem ciąg (x ) jest zbieży do x 0 w ormie m, która okazuje się zupeła. Jak zupełe i prówywale ormy oraz m są więc rówoważe, a fukcjoały α k są ciągłe także względem ormy wyjściowej Twierdzeie. Jeśli przestrzeń X ma bazę Schaudera, to każdy operator T C(X) jest graicą w ormie operatorów skończoego wymiaru.
3 3 Dowód. Niech {e } będzie bazą. Projektory P (x) = α k (x)e k są ciągłe i zbieże moco do I. Jako, że zbiór T (B) jest warukowo zwarty, P są zbieże jedostajie a T (B), a to ozacza, że P T T w ormie. Kolejy lemat wprowadza amiastkę pojęcia ortogoalości w przestrzeiach Baacha Lemat (Riesz). Jeśli Y jest domkiętą podprzestrzeią X, to dla każdej liczby 0 < q < 1 istieje u X o ormie 1, taki że dist(u, Y ) > q. Dowód. Niech x / Y i iech y Y będzie takie, że α = x y < q 1 dist(x, Y ). Niech u = α 1 (x y). Jak widać, u = 1 oraz dist(u, Y ) α 1 dist(x, Y ) > q. Niech X będzie ciągiem domkiętych iezmieiczych podprzestrzei operatora liiowego T. Jeśli X X +1, x X \ X 1 i T x = λ x (mod X 1 ), to mówimy, że ciągi (X, x, λ ) tworzą góry układ trójkąty dla T. Jeśli atomiast X +1 X, x X \ X +1 i to mówimy o dolym układzie trójkątym. T x = λ x (mod X +1 ), Lemat. Jeśli (X, x, λ ) jest ieskończoym górym lub dolym układem trójkątym dla T C(X), to λ 0. Dowód. Niech (X, x, λ ) będzie górym układem trójkątym. Niech y < X 1 {x } > będzie wektorem jedostkowym i takim, że dist(y, X 1 ) 1/2. Wtedy więc dla m > a to ozacza, że T y = λ y (mod X 1 ), T y m T y = λ y m (mod X ), T y m T y λ m /2 dla ieskończeie wielu. Gdyby ciąg (λ ) ie dążył do zera, istiałby podciąg T y mk, z którego ie dało by się wybrać zbieżego podciągu Twierdzeie. Niech X będzie przestrzeią Baacha. Niech T C(X) i iech A = I + T. Wtedy i) Obraz operatora A jest domkięty. ii) A jest surjekcją, wtedy i tylko wtedy gdy jest ijekcją. iii) dim ker A < oraz codim Im A <.
4 4 Dowód. i). Niech à : X/ ker A Im A będzie zaday wzorem Ã(π(x)) = Ax, gdzie π : X X/ ker A jest odwzorowaiem ilorazowym. Pokażemy, że istieje stała c > 0, taka że Ã(π(x)) cπ(x), x X. Gdyby tak ie było, to istiałby ciąg x 2, taki że π(x ) = 1 oraz a więc i podciąg (x k ), taki że π(x ) + T π(x ) 1/, lim π(x k ) = lim T π(x k ) = π(x 0 ). k k Jak jedak łatwo zauważyć, π(x 0 ) + T π(x 0 ) = 0, więc x 0 ker A, ale to ie jest możliwe, bo π(x 0 ) = 1. Z udowodioej ierówości wyika, że à jest izomorfizmem a Im A, który jest wobec tego domkięty. ii). Przypuśmy ie wprost, że A jest surjekcją, ale ie ijekcją. Zdefiiujemy idukcyjie ciąg wektorów. Niech x 0 = 0 i iech 0 x 1 ker A. Jeśli day jest już wektor x, iech Ax +1 = x. Niech jeszcze X =< x 0, x 1,..., x >, = 0, 1, 2,.... Jak łatwo widzieć, x X \X 1 i T x +1 = x +1 +x. Zatem (X, x, 1) tworzą ieskończoy góry układ trójkąty, gdzie λ = 1 dla wszystkich, co być ie może. Jeśli teraz A jest ijektywy, ale ie jest surjekcją, to obraz Im A jako domkięty ie jest gęsty. Stąd A, który jest tej samej postaci, jest ieijektywą surjekcją, co daje sprzeczość a mocy poprzedich rozważań. iii). Na podprzestrzei ker A zwarty operator T jest rówy I, więc jej wymiar musi być skończoy. Skończoy jest także wymiar jądra A = I + T, co pociąga, że wymiar przestrzei (Im A) = {ξ X : ξ(x) = 0, x Im A} jest skończoy. Zatem dopełieie algebraicze obrazu Im A, który jest podprzestrzeią domkiętą, ma wymiar skończoy Twierdzeie. Niech T będzie operatorem zwartym. Spektrum σ(t ) jest zbiorem co ajwyżej przeliczalym i jego puktem skupieia może być tylko 0. Każdy iezerowy elemet λ σ(t ) jest wartością własą skończoej krotości. Dowód. Niech 0 λ σ(t ). Operator λi T = λ(i λ 1 T ) jest ieodwracaly, więc musi być ijektywy. Zatem λ jest wartością własą skończoej krotości, bo wymiar jądra I λt jest skończoy. Niech λ będzie ciągiem parami różych wartości własych zbieżym do λ. Niech x będzie wektorem własym odpowiadającym λ. Niech X =< {x k } >. Wtedy (X, x, λ ) jest ieskończoym górym układem trójkątym, a zatem λ = lim λ = 0, jak chcieliśmy. Spektrum jest przeliczale, bo jest zbiorem o co ajwyżej jedym pukcie skupieia. Uwaga. Jeśli spektrum jest ieskończoe, to 0 σ(t ), bo wtedy ciąg wartości własych jest zbieży do zera. Zero ie musi być wartością własą, bo T może mieć zerowe jądro (operator Volterry). Jeśli jedak zero jest wartością własą, jego krotość może być ieskończoa, jak w przykładzie Ax() = ε x(), x c 0, ε = 1 + ( 1). 2
5 Wiosek. Niech H będzie przestrzeią Hilberta, a T C(H). Istieją wówczas układy ortoormale {e } i {f } oraz ciąg liczb µ > 0, takie że T x = µ < x, e > f, x H. Dowód. Niech {e } będzie układem ON wektorów własych T odpowiadających jego iezerowym wartościom własym µ. Niech Y = < {e } >. Mamy Y = ker T = ker T. Niech T = U T będzie rozkładem polarym T. Wtedy gdzie f = Uf. T x = T ( < x, e > e ) = µ < x, e > f, Lemat. Niech H będzie przestrzeią Hilberta, a T C(H) będzie ormaly. Jeśli T u = λu, to T u = λu. Poadto przestrzeie włase H λ i H µ są ortogoale dla λ µ. Dowód. Mamy Jako że H λ = {x X : T x = λx}. T (T u) = T (T u) = λt u, przestrzeń ta jest iezmieicza dla obu operatorów. Zatem T = λi a H λ. Jeśli teraz λ 1 λ 2 są wartościami własymi T, a u 1 i u 2 odpowiadającymi im wektorami własymi, to a więc < u 1, u 2 >= 0. λ 1 < u 1, u 2 >=< T u 1, u 2 >=< u 1, T u 2 >= λ 2 < u 1, u 2 >, Wiosek. Niech H będzie przestrzeią Hilberta, a T C(H) będzie ormaly. Niech {λ } będzie ciągiem jego wszystkich wartości własych liczoych wraz z krotościami. Istieje wówczas baza ortoormala {e }, taka że (0.19) T x = λ < x, e > e, x H. Niech T będzie zwartym operatorem ormalym. Niech {e } będzie bazą jego wektorów własych. Ozaczmy przez P rzut ortogoaly a Ce. Wzór (0.19) możemy zapisać w postaci T = gdzie szereg jest zbieży w ormie. Rzeczywiście, λ P, N λ P max N λ 0, N. W szczególości dla wektorów x, y H < T x, y >= λ < P x, y >= λ µ x,y (dλ), σ(t ) gdzie µ jest miarą zakowaą a C o ośiku w σ(t ) określoą wzorem µ(e) = λ E λ. Mamy µ x,y x y. Jeśli y = x, to µ x = µ x,x jest miarą dodatią o całkowitym wahaiu µ = x 2. Twierdzeie spektrale uogólia te opis a wszystkie ograiczoe operatory ormale.
Szkic notatek do wykładu Analiza Funkcjonalna MAP9907
Szkic otatek do wykładu Aaliza Fukcjoala MAP9907 Prowadzący: prof dr hab Tomasz Dowarowicz Sporządził: Paweł Szołtysek Spis treści I Wstęp do Aalizy Fukcjoalej 0 Przestrzeie Metryka Kula 3 Zbiory otwarte
Bardziej szczegółowoI. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
Bardziej szczegółowoWektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
Bardziej szczegółowoZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.
ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką
Bardziej szczegółowoAnFunIIa.tex January 19, 2016 ANALIZA FUNKCJONALNA II (2015/2016)
AFuIIa.tex Jauary 19, 2016 ANALIZA FUNKCJONALNA II (2015/2016) 1. Widmo operatora zwartego i operatora samosprzężoego. Niech H będzie przestrzeią Hilberta i B(H) zbiorem operatorów ograiczoych w H. Zbiorem
Bardziej szczegółowoZestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska
Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }
Bardziej szczegółowoAnaliza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Bardziej szczegółowoWykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Bardziej szczegółowoPodróże po Imperium Liczb
Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis
Bardziej szczegółowo1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Bardziej szczegółowoMateriały do ćwiczeń z Analizy Matematycznej I
Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Bardziej szczegółowoStwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Bardziej szczegółowox 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Bardziej szczegółowo2. Nieskończone ciągi liczbowe
Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi
Bardziej szczegółowo3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
Bardziej szczegółowoEkonomia matematyczna - 1.1
Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x
Bardziej szczegółowoSZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n
SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly
Bardziej szczegółowoZadanie 1.6. Niech n N, a R + \ N, a 2 = n. Wykazać, że a / Q. Zadanie 1.7. Wykazać następujące twierdzenia za pomocą indukcji matematycznej.
. Liczby wymiere zasada idukcji matematyczej przekroje Dedekida Zadaie.. Niech A Q. Wykazać że jeśli istieje mi A odp. max A) to istieje if A odp. sup A) oraz if A = mi A odp. sup A = max A). Zadaie..
Bardziej szczegółowoAnaliza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013
Aaliza Fukcjoala WPPT IIIr. semestr leti 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 NiechX ozaczaprzestrzeńbaacha,ax jejdual a(czyliprzestrzeńfukcjoa lów ograiczoych
Bardziej szczegółowoCiągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Bardziej szczegółowoAnaliza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
Bardziej szczegółowo1. Miara i całka Lebesgue a na R d
1. Miara i całka Lebesgue a a R d 1. Miara. Mówimy, że rodzia podzbiorów S zbioru Ω jest σ-ciałem, jeśli wraz z każdym zbiorem zawiera oa jego dopełieie i jest zamkięta a sumowaie przeliczalych podrodzi.
Bardziej szczegółowoMateriały do wykładu Matematyka Stosowana 1. Dariusz Chrobak
Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................
Bardziej szczegółowo1 Ciągłe operatory liniowe
1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego
Bardziej szczegółowoa 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Bardziej szczegółowo(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe
. Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R
Bardziej szczegółowo8. Jednostajność. sin x sin y = 2 sin x y 2
8. Jedostajość Mówimy, że fukcja f : I R spełia waruek Lipschitza ze stałą C > 0, jeśli fx) fy) C x y, x, y I. 8.. Przykład. a) Taką fukcją jest p. si : R [, ]. Rzeczywiście, si x si y = 2 si x y 2 cos
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Bardziej szczegółowoI kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Bardziej szczegółowoTwierdzenie spektralne
Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi
Bardziej szczegółowozadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
Bardziej szczegółowoMACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Bardziej szczegółowoWykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Bardziej szczegółowoTwierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Bardziej szczegółowoZdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Bardziej szczegółowoWykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r
Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
Bardziej szczegółowoZadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
Bardziej szczegółowoEkonomia matematyczna - 2.1
Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Bardziej szczegółowoO liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Bardziej szczegółowoFunkcja wykładnicza i logarytm
Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a
Bardziej szczegółowo1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
Bardziej szczegółowo3 Arytmetyka. 3.1 Zbiory liczbowe.
3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N
Bardziej szczegółowoSzeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Bardziej szczegółowo( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
Bardziej szczegółowoTwierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Bardziej szczegółowoSzeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
Bardziej szczegółowodna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że
KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a
Bardziej szczegółowoZadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Bardziej szczegółowoWzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
Bardziej szczegółowoZadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
Bardziej szczegółowo+ ln = + ln n + 1 ln(n)
"Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów
Bardziej szczegółowo1 Wersja testu A 21 czerwca 2017 r. 1. Wskazać taką liczbę wymierną w, aby podana liczba była wymierna. w = w 2, w = 2.
1 Wersja testu A 1 czerwca 017 r. 1. Wskazać taką liczbę wymierą w, aby podaa liczba była wymiera. 10 1 ) 10 +w, w = 1 5 1 ) 10 +w, w = ) 10 10 3 +w 3, w = 1 ) 5 10 3 +w 3, w = 4. Zapisać wartość podaej
Bardziej szczegółowoc 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
Bardziej szczegółowoRelacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Bardziej szczegółowoP ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.
Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy
Bardziej szczegółowoMatematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów
Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość
Bardziej szczegółowoSzeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.
Bardziej szczegółowoFraktale - ciąg g dalszy
Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety
Bardziej szczegółowoKorzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Bardziej szczegółowoWykład z Rachunku Prawdopodobieństwa II
Matematyka stosowaa Wykład z Rachuku Prawdopodobieństwa II Adam Osękowski ados@mimuw.edu.pl http://www.mimuw.edu.pl/~ados Uiwersytet Warszawski, 2011 Streszczeie. Celem iiejszego skryptu jest wprowadzeie
Bardziej szczegółowoMetody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Bardziej szczegółowogi i szeregi funkcyjne
ostatia aktualizacja: 15 czerwca 2012, 18:42 Podobie jak poprzedio wieszam tekst, ad którym powiieem jeszcze popracować, wie c prosze o iformacje o zauważoych b le dach. Przyk lad fukcji g lej igdzie ieróżiczkowalej
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoWykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011
Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.
Bardziej szczegółowoRekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Bardziej szczegółowoAnaliza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Bardziej szczegółowoNiezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoZadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Bardziej szczegółowoUKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Bardziej szczegółowoAnaliza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
Bardziej szczegółowoPlanowanie doświadczeń - DPLD LMO Materiały pomocnicze
Plaowaie doświadczeń - DPLD LMO Materiały pomocicze Układ bloków kompletie zradomizowaych Założeia: (a) Z jedostek doświadczalych tworzymy rówolicze grupy zwae blokami (b bloków) w taki sposób, aby jedostki
Bardziej szczegółowoWyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia
Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1
Bardziej szczegółowoAnaliza funkcjonalna II Ryszard Szwarc
Analiza funkcjonalna II Ryszard Szwarc Wykład prowadzony w semestrze letnim 28 Opracowany na podstawie notatek Wiktora Malinowskiego Wrocław 21 2 Analiza funkcjonalna II Spis treści 1 Operatory ograniczone
Bardziej szczegółowoALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x
Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14
Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli
Bardziej szczegółowoAnaliza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
Bardziej szczegółowoTwierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
Bardziej szczegółowoDamian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Bardziej szczegółowoI. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Bardziej szczegółowo1 Przestrzenie Hilberta
M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Bardziej szczegółowoRachunek różniczkowy funkcji wielu zmiennych
Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji
Bardziej szczegółowoRozmieszczenie liczb pierwszych
Rozmieszczeie liczb pierwszych Euler Pierwszy owoczesy wyik pochodzi od Eulera: TWIERDZENIE: Szereg p primes p est rozbieży. Szkic dowodu: Dla s > zachodzi rówość ( ) = s = i= ( + p s i ) + p 2s i +....
Bardziej szczegółowo2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Bardziej szczegółowoStatystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Bardziej szczegółowo3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Bardziej szczegółowo1 Pochodne wyższych rzędów
1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą
Bardziej szczegółowoPierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Bardziej szczegółowoRównoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.
16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)
Bardziej szczegółowoEkonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
Bardziej szczegółowoElementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Bardziej szczegółowoAnaliza Matematyczna I dla Fizyki na WPPT Lista zadań
Aaliza Matematycza I dla Fizyki a WPPT Lista zadań Jacek Cichoń, WPPT, PWr, 208/9 Zadaia ozaczoe * są ieco trudiejsze od zadań bez gwiazdki. Zadaia ozaczoe ** są jeszcze trudiejsze. Wstęp. Logika, zbiory
Bardziej szczegółowo