PRACOWNIA FIZYCZNA I
|
|
- Bogna Komorowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna - studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.
2 Politechnika Gdańska, międzywydziałowy kierunek Inżynieria Biomedyczna USTALENIA WSTĘPNE Wymagania wstępne: Zapoznanie się z wiadomościami teoretycznymi oraz przebiegiem ćwiczenia zawartymi w instrukcji do ćwiczenia. Cele ćwiczenia: 1. Usystematyzowanie wiedzy z zasady zachowania pędu i zasady zachowania energii mechanicznej punktu materialnego. 2. Zapoznanie studentów z metodą pomiaru zjawisk fizycznych, które zachodzą w czasie rzędu mikro sekund. 3. Wykonanie pomiaru napięcia ładowania i rozładowania kondensatora dla różnych stałych czasowych i różnych energii kinetycznych ciał. 4. Analiza zebranych danych pomiarowych, niepewności pomiarowych oraz wyznaczenie czasu zderzeń badanych obiektów. 5. Oszacowanie niepewności czasu zderzeń. 6. Sformułowanie wniosków. Wykaz przyrządów niezbędnych do wykonania ćwiczenia: Rys. 1: Układ pomiarowy: 1 - masywna i nieruchoma szyna; 2 - badane ciała; 3 - stojak z regulacją wysokości; 4 - układ RC; 5 - zasilacz prądu stałego; 6 - woltomierz analogowy; 7) przymiar liniowy. Wykaz literatury podstawowej: 1. D. Halliday, R. Resnick, J. Walker - Podstawy fizyki. 2. M. Skorko - Fizyka dla studentów wyższych technicznych studiów zawodowych. 2
3 3. H. Szydłowski - Pracownia fizyczna wspomagana komputerem. 4. K. A. Tsokos - Physics for IB diploma. WPROWADZENIE DO ĆWICZENIA Zderzeniami ciał rządzą zasady zachowania pędu i zachowania energii. Ze względu, które wielkości są zachowane rozróżniamy zderzenie niesprężyste (tylko zachowany jest pęd całkowity układu) oraz sprężyste (tu spełnione są obydwie ww. zasady zachowania). W wyniku zderzenia niesprężystego ciał, łączą się one w jeden obiekt jak na rysunku 2. Dla tego zde- Rys. 2: Przykład zderzenia idealnie centralnie niesprężystego. rzenia zasadę zachowania pędu w postaci skalarnej możemy zapisać w postaci m 1 v 1 m 2 v 2 = (m 1 + m 2 )v 3, (1) na podstawie której wyznaczymy prędkość v 3 ciał po zderzeniu W wyniku zderzenia ciała straciły energię o wartości v 3 = m 1v 1 m 2 v 2 m 1 + m 2. (2) E s = 2 m 1m 2 m 1 + m 2 v 1 v 2 (3) Zderzenie sprężyste pokazane na rysunku 3 wymaga spełnienia jednocześnie zasady zachowania pędu i energii postaci Rys. 3: Przykład zderzenia idealnie centralnie sprężystego. ZZP : m 1 v 1 m 2 v 2 = m 1 u 1 + m 2 u 2 ZZE : 1 2 m 1v m 2v2 2 = 1 2 m 1u m 2u 2 2. (4) 3
4 Rozwiązując układ równań 4 uzyskamy prędkości ciał po zderzeniu idealnie centralnie sprężystym w postaci u 1 = (1 m 1 m 2 )v 1 + 2v m 1 m 2, (5) (1 m 2 )v 2 + 2v 1 m u 2 = m. (6) 2 m 1 Z wzoru 5 i 6 wynika, że jeżeli ciała mają taką samą masę tj. m 1 = m 2 = m, to w wyniku zderzenia idealnie sprężystego ciała te wymienią się prędkościami. Jeżeli rozważamy przypadek w którym m 2, to ciało m 1 w wyniku zderzenia idealnie sprężystego zmieni wyłącznie zwrot swojej prędkości na przeciwny. Należy jednak zwrócić uwagę, że podczas zderzenia sprężystego, ciała pozostają przez pewien czas w kontakcie ze sobą - ciała te ulegają odkształceniu. Deformacja kul polega na wgnieceniu się sprężystym tych ciał. Zakładając takie Rys. 4: Odkształcenie w zderzeniu sprężystym ciał. przybliżenie, możemy określić odległość najbliższego zbliżenia ciał poprzez formułę x max = τv wzg π, (7) w którym τ jest czasem zderzenia, a v m prędkością względną kul przed zderzeniem. Wzór 7 wynika wprost z zamiany energii kinetycznej ciał na energię potencjalną sprężystości. Zmiana energii potencjalnej sprężystości będzie powodowana poprzez siłę sprężystości F s = kx, (8) w którym k opisuje współczynnik sprężystości ciał natomiast x jest względnym odkształceniem ciał. Wiedząc, że siła ta będzie miała największą wartość w x max oraz współczynnik sprężystości k możemy przedstawić za pomocą częstości ω oraz masy zredukowanej µ, wartość największego oddziaływania ciał wynosi F max = µ πv wzg. (9) τ Masę zredukowana układu dwóch ciał obliczamy za pomocą zależności 4 µ = m 1m 2 m 1 + m 2 (10)
5 Należy jednak pamiętać, że parametry zderzenia x max i F max określone wzorem 7 i 9 są pewnym oszacowaniem tych wielkości. W rzeczywistym zderzeniu ciał, odkształcenie ciał jest funkcją wielu zmiennych, czyli jest wiele parametrów, aby w prosty sposób wyjaśnić cały proces zderzenia. PRZEBIEG ĆWICZENIA Czas trwania zderzenia dwóch ciał można wyznaczyć za pomocą układu przedstawionego na rysunku 5. Rys. 5: Schemat układu pomiarowego. Gdy kula znajduje się w pozycji B wówczas następuje ładowanie kondensatora do wartości U 0 zgodnie z równaniem [ t U l (t) = U 0 1 exp( RC )], (11) w którym iloczyn RC jest stałą czasową i odpowiada za szybkość ładowania kondensatora (napięcie zasilania U 0 jest ustalane na początku ćwiczenia i nie jest zmieniane w trakcie trwania pomiarów). W momencie, kiedy kula zostanie zwolniona z pozycji B i osiągnie pozycję A, to przez pewien czas, w wyniku zderzenia, układ ponownie będzie tworzył układ zamknięty, z tą różnicą, że następować będzie rozładowanie kondensatora. Tempo rozładowania jest opisane zależnością U r (t) = U 0 exp ( t ). (12) RC Po pojedynczym akcie zderzenia i spadku napięcia na kondensatorze do wartości U 1 możemy wyznaczyć czas zderzenia poprzez przekształcenie równania 12 do postaci τ = RC ln U 0 U 1 (13) Prędkość ciała tuż przed zderzeniem możemy wyznaczyć z zasady zachowania energii. Przyjmując energię potencjalną równą zero na poziomie A oraz zaniedbując wszelkie opory 5
6 ruchu, można zapisać zasadę zachowania energii mechanicznej w postaci 0 + mg(h 2 h 1 ) = mv (14) Przekształcając równanie 14 wyznaczymy prędkość kuli v tuż przed zderzeniem v = 2g(h 2 h 1 ). (15) Pomiar napięcia ładowania U l, napięcia rozładowania U r oraz wysokości h 1 i h 2 jest niezbędny do wyznaczenia czasu zderzenia oraz wyznaczenia parametrów zderzenia x max oraz F max. Do pomiarów należy także dobrać odpowiednie wartości oporu R, aby stała czasowa nie miała zbyt dużej lub zbyt małej wartości co może utrudnić odczytanie napięcie rozładowania U r lub wpłynąć na wartości niepewności pomiarowe. Zadania do wykonania 1. Wyznaczyć czas zderzenia kul o różnych masach (masę wyznaczamy na podstawie znajomości materiału kulki oraz poprzez pomiar średnicy) i prędkościach z szyną (prędkość wyznaczamy z zależności 15). Wszystkie pomiary napięcia na kondensatorze po zderzeniu powtarzamy kilkukrotnie. 2. Oszacować parametry zderzenia x max i F max. 3. Zastanowić się, czy są przesłanki, by przeprowadzić analizę wpływu prędkości i rodzaju materiału na czas zderzenia. Porównać wartości F max z ciężarem kul. OPRACOWANIE DANYCH POMIAROWYCH Do obliczenia wartości czasu zderzenia τ potrzebne są wartości U 0, U 1, R i C, dlatego w pierwszym rzędzie należy ocenić niepewności standardowe pomiaru tych wielkości. Ponieważ wartość napięcia U 0 powinna być stała podczas wykonywania ćwiczenia, wnioskujemy, że niepewność eksperymentatora e U 0 oraz odchylenie wyników od średniej S Uo są równe zero. Wówczas niepewność maksymalna napięcia U 0 jest zależna od klasy przyrządu oraz wybranego zakresu i wynosi U 0 = klasa przyrządu zakres liczba działek gdzie: dz U 0 = dz U to najmniejsza działka na skali miernika. Niepewność standardowa kilkukrotnie mierzonego napięcia U 1 wynosi S U1 = zaś jej maksymalna niepewność wynosi ( dz U 1 ) dz U 0 ; (16) + S 2 U 1, (17) U 1 = 3S U1. (18) 6
7 Względna niepewność oporu R podana przez producenta wynosi δ R = 1%. Do niepewności podanej przez producenta dodajemy także niepewność związaną z oporem przewodów doprowadzających o wartości 0, 5Ω. Niepewność maksymalna oporu R wynosi więc R = ( δ R R , 5) Ω. (19) Na podstawie danych producenta niepewność względna pojemności C wynosi δ C = 2% czyli maksymalna niepewność C wynosi C = δ C C. (20) Mając określone powyższe niepewności oraz stosując metodę różniczki zupełnej obliczamy maksymalną niepewność τ czasu zderzenia z zależności τ = τ R + τ C + RC U 0 + RC U 1. (21) R C Parametry zderzenia x max oraz F max są tylko oszacowaniem, więc nie trzeba określać ich niepewności, jednak na podstawie uzyskanych wartości należy przedyskutować we wnioskach przebieg zderzenia ciał. SPRAWDŹ CZY ROZUMIESZ - ZADANIA PROBLEMOWE 1. Pocisk o masie m lecący poziomo, uderza w drewniany klocek o masie M zawieszony U 0 na nieważkiej i nierozciągliwej linie o długości l. W wyniku uderzenia pocisk pozostaje w klocku, a lina, na której jest on zawieszony odchyla się kąt α od pionu. Wyznacz prędkość, z jaką poruszał się pocisk przed zderzeniem. 2. Kula o masie m 1 poruszająca się z prędkością v 1 uderza w poruszającą się z naprzeciwka z tą samą prędkością kulę o masie m 2. Jaki musi być stosunek mas tych kul, aby w wyniku zderzenia sprężystego kula pierwsza odbiła się od kuli drugiej i poruszała się z prędkością o 50% większą niż przed zderzeniem? Jaka będzie w tym przypadku prędkość kuli drugiej? 3. Dwie kule, jedna o masie m 1 i druga o masie m 2, wiszą na nieważkich niciach o długości l tak, że w położeniu równowagi stykają się ze sobą. Kulę o masie m 1 wychylono z położenia równowagi podnosząc ją o h 1 względem położenia równowagi tak, że nić jest nadal napięta. Po uwolnieniu kuli o masie m 1, zderza się ona doskonale niesprężyście z kulą o masie m 2. Wyznaczyć maksymalną wysokość, na jaką wzniosą się kule po zderzeniu. U 1 7
8 PRACOWNIA FIZYCZNA I - KARTA POMIARÓW WYZNACZANIE CZASU ZDERZEŃ DWÓCH CIAŁ nazwisko i imię data wykonania 1) Wyznaczenie średnicy kulek lp Materiał i I φ i [ ] II φ i [ ] III φ i [ ] 2) Pomiary dla kulki I i h 1i [ ] h 2ia [ ] h 2ib [ ] U 1ia [ ] U 1ib [ ] R =...; C =...; U 0 =...; dz U 0 =...; klasa:...;liczba działek =...; 3) Pomiary dla kulki II i h 1i [ ] h 2ia [ ] h 2ib [ ] U 1ia [ ] U 1ib [ ] R =...; C =...; U 0 =...; dz U 0 =...; klasa:...;liczba działek =...; 4) Pomiary dla kulki III i h 1i [ ] h 2ia [ ] U 1ia [ ] R =...; C =...; U 0 =...; dz U 0 =...; klasa:...;liczba działek =...;... podpis prowadzącego zajęcia 8
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Zakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
Przykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Wyznaczenie współczynnika restytucji
1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
MECHANIKA 2. Teoria uderzenia
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia Prowadzący: dr Krzysztof Polko DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają
b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
FIZYKA LABORATORIUM prawo Ohma
FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO II ETAP REJONOWY 6 grudnia 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wszystkich zadań masz 90 minut. 2. Pisz długopisem/piórem
Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego
Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie
Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
LABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Ćw. 2: Analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
PRACA. MOC. ENERGIA. 1/20
PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Bierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Zasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 lutego 06 r. zawody III stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą, która
Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2011/2012) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1&2: Wprowadzenie do obsługi przyrządów
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Zasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Zadanie 2. Oceń prawdziwość poniższych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.
Zadanie 1. W pewnej odległości od siebie umieszczono dwie identyczne kulki o metalizowanych powierzchniach. Ładunek elektryczny zgromadzony na pierwszej kulce wynosił +6q, a na drugiej -4q (gdzie q oznacza
Podstawy niepewności pomiarowych Ćwiczenia
Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?
Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne
Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
PRACOWNIA FIZYCZNA I
Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 1: Badanie siły odśrodkowej. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna - studia
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
R 1. Układy regulacji napięcia. Pomiar napięcia stałego.
kłady regulacji napięcia. Pomiar napięcia stałego.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia stałego, stosowanymi w tym celu układami elektrycznymi, oraz metodami
SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO
SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2
Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał
PRZEDMIOTOWY SYSTEM OCENIANIA
1 PRZEDMIOTOWY SYSTEM OCENIANIA Ogólne zasady oceniania zostały określone rozporządzeniem MEN (Rozporządzenie Ministra Edukacji Narodowej z dnia 16 sierpnia 2017 r. w sprawie oceniania, klasyfikowania
Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Laboratorium Fizyki WTiE Politechniki Koszalińskiej. Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych
z 5 Laboratorium Fizyki WTiE Politechniki Koszalińskiej Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych. el ćwiczenia Poznanie jednej z metod wyznaczania pojemności zalecanej
Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )
Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła
Drgania relaksacyjne w obwodzie RC
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 311 Temat ćwiczenia: Drgania relaksacyjne w obwodzie RC Nr. studenta: 5 Nr.
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.
LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ
INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną