DYNAMICZNA STATECZNOŚĆ SŁABYCH RÓWNAŃ UKŁADÓW CIĄGŁYCH DYNAMIC STABILITY OF CONTINUOUS SYSTEMS IN WEAK FORMULATION
|
|
- Urszula Świderska
- 6 lat temu
- Przeglądów:
Transkrypt
1 ANDRZEJ TYLIKOWSKI DYNAMICZNA STATECZNOŚĆ SŁABYCH RÓWNAŃ UKŁADÓW CIĄGŁYCH DYNAMIC STABILITY OF CONTINUOUS SYSTEMS IN WEAK FORMULATION Sreszczeie Absrac Niiejszy arykuł poświęcoy jes aalizie dyamiki układów ciągłych w słabym sformułowaiu. Wyprowadzoo słabą posać rówaia dyamiki belki poddaej działaiu osiowej losowo zależej od czasu siły. Posługując się bezpośredią meodą Lapuowa zbadao prawie pewą sabilość sochasyczą prosoliiowej posaci belki bez uprzediej dyskreyzacji zadaia. Wyzaczoo waruki dosaecze sabilości belki swobodie podparej i szywo uwierdzoej a obu końcach. Słowa kluczowe: słabe sformułowaie drgaia paramerycze waruki dosaecze sabilości meoda Lapuowa Dyamics of coiuous sysems have bee cosidered i a weak (variaioal) form. Dyamics equaio of beam subjeced o he aial sochasic force i he weak formulaio has bee derived. The almos sure sochasic sabiliy of beam equilibrium wihou he previous discreizaio has bee aalysed by meas of direc Lyapuov mehod. Sufficie sabiliy codiios have bee esablished for he simply suppored beam ad he clamped beam. Keywords: weak formulaio parameric vibraio sufficie sabiliy codiios Lyapuov mehod Prof. dr hab. Adrzej Tylikowski Isyu Podsaw Budowy Maszy Wydział Samochodów i Maszy Roboczych Poliechika Warszawska.
2 4 Ozaczeia W przemieszczeie belki w bezwymiarowe przemieszczeie belki u macierz kolumowa przemieszczeia uogólioego X współrzęda X bezwymiarowa współrzęda T czas T czas bezwymiarowy H współczyik łumieia wiskoyczego Β bezwymiarowy współczyik arcia wiskoyczego β warości włase belki szywo uwierdzoej oboma końcami f o sała składowa siły osiowej f zmiea składowa osiowej V fukcjoał Laguowa U pomociczy fukcjoał Λ fukcja wysępująca w górym oszacowaiu fukcjoału U ξ -a posać drgań swobodych κ sała (.) pochoda cząskowa względem (.) pochoda cząskowa względem czasu miara odległości rozwiązaia zaburzoego od sau rówowagi E P k warość oczekiwaa prawdopodobieńswo współczyik skali czasu. Wsęp Układy akywego łumieia drgań ciekościeych elemeów płyowych czy powłokowych mogą zawierać elemey piezoelekrycze oddziaływujące a kosrukcję. W uproszczoym modelu wpływ e sprowadza się do działaia momeów gących lub sił rozłożoych a krawędziach elemeu piezoelekryczego. Zasosowaie dysrybucji δ Diraca i jej pochodej skukuje aaliyczym zapisem obciążeia i wprowadza ieregularości do rozwiązaia zadaia drgań wymuszoych układu ciągłego. Jeżeli rozważać p. płyę prosokąą o długości a i szerokości b z parą akuaorów piezoelekryczych idealie przyklejoych do obu powierzchi przeciwie spolaryzowaych w kszałcie rombu o wierzchołkach w środkach krawędzi płyy o momey pochodzeia elekryczego mają asępującą posać M el = el M y = C() [ H ( y b / + b / a) H ( y 3b / + b / a) ] [ H ( y + b / b / a) H ( y b / b / a) ] gdzie ( ) H jes fukcją Heaviside a a sała C jes zaą fukcją czasu zależą od przyłożoego apięcia do powierzchi akuaorów geomerii i sałych mechaiczych płyy i akuaorów. Jeżeli apięcie jes geerowae w pęli sprzężeia zwroego o C jes ()
3 fukcjoałem pola odkszałceń i pola prędkości odkszałceń płyy [3 4]. W rówaiu dyamiki płyy pojawiają się zaem ieregulare składiki a rówaie o ma posać 43 el el ρaw TT + EJW XXXX + M + M y yy = () W odpowiadającym rówaiu () słabym (wariacyjym) sformułowaiu rówaia dyamiki płyy ie wysępują wyższe pochode przemieszczeń i ie pojawiają się składiki ieregulare []. Celem iiejszego arykułu jes zbadaie sabilości sochasyczej rówań dyamiki belki w słabym sformułowaiu i wyprowadzeie dosaeczych waruków prawie pewej saeczości sochasyczej.. Sile i słabe sformułowaie rówań drgań poprzeczych belki Rozparujemy belkę jedorodą o długości L poddaą działaiu osiowej siły o składowych sałej i zależej od czasu. Belka może wykoywać ruch w jedej płaszczyźie łumioy arciem wiskoyczym a przemieszczeie poprzecze W spełia asępujące rówaie ρ AW + hw + EJW + F + F T W = X L (3) [ ( )] ( ) TT T XXXX XX Przechodząc do współrzędych bezwymiarowych = X/L w = W/L = T/k rówaie drgań poprzeczych belki ma posać w + βw + w + [ f + f ( ) ] w = ( ) (4) gdzie β = 4 ( ) = F( k ) L EJ 4 4 hk / ρ A k = ρ AL / EJ f = F L / EJ f / Rówaia () (4) są rówaiami silymi gdyż wymagae jes isieie czwarej pochodej cząskowej przemieszczeia belki. Poado ależy je uzupełić warukami brzegowymi. Rozwiązaie rówaia belki o końcach swobodie podparych i końcach szywo uwierdzoych mają odpowiedio posać w( ) = w( ) = (5) w = w = ( ) ( ) ( ) = w( ) = ( ) = w ( ) = w w Celem rozważań jes aaliza saeczości rozwiązaia rywialego (sau rówowagi) belki. Badaa będzie możliwość uray saeczości wyikającej z drgań parameryczych o arasającej ampliudzie. Rezulaem pracy jes wyzaczeie waruków dosaeczych sabilości prosoliiowej posaci belki. W celu wyprowadzeia słabej posaci rówaia dyamiki belki ależy skorzysać z zasady Hamiloa. Fukcjoał działaia belki poddaej działaiu osiowej siły f z pomiięciem łumieia ma posać A( w) = ( ) w w + f w dd (7) (6)
4 44 Waruek zerowaia się wariacji fukcjoału działaia d d [ A( w + εφ )] = ε= ε prowadzi do asępującej rówości spełioej dla dowolej fukcji Φ spełiającej podsawowe waruki brzegowe w w fw d Φ Φ+ Φ Φ = (9) Uwzględiając arcie wiskoycze oraz zmieą składową obciążeia jako siły zewęrze słaba posać rówaia dyamiki belki ma posać Φ ( ) ( w w ) w f f () w d () +β Φ+ Φ + Φ = W rówaiu () ie wysępuje czwara pochoda cząskowa ugięcia. Zaem rozwiązaie rówaia słabego (wariacyjego) jes miej gładkie. Jeżeli dodakowo założy się że isieje czwara pochoda cząskowa o dwukroe całkowaie przez części prowadzi do silego sformułowaia (4). (8) 3. Defiicja i aaliza saeczości drgań poprzeczych belki Przed przysąpieiem do badaia saeczości rozwiązaia rywialego w ( ) = = w = ależy wprowadzić miarę odległości (ormę merykę) rozwiązaia ( ) rówaia () od rozwiązaia rywialego ozaczoą przez.. W iiejszym arykule miara a będzie związaa z dodaio określoym fukcjoałem. Należy rówież sprecyzować pojęcie saeczości dyamiczej. Jeżeli składowa zmiea siły osiowej jes losową fukcją czasu wprowadzamy pojęcie prawie pewej saeczości [] kóra zachodzi gdy P lim u(. ) = () gdzie u = col {w w } jes macierzą kolumową zależą od przemieszczeia i prędkości belki. Pojęcie prawie pewej saeczości dyamiczej adaje się do zasosowaia w rówaiach sochasyczych ze współczyikami będącymi procesami realizowalymi fizyczie j. procesami o skończoej wariacji. Zaem siła osiowa ie może być przyjęa w posaci zw. białego szumu kiedy o dyamika belki powia być opisaa rówaiem ewolucyjym Iô. W układach liiowych zachodzi rówoważość przyjęej defiicji z defiicją klasyczą sabilości ruchu w sesie Lapuowa. W celu zbadaia saeczości przyjmujemy za Koziem [] eergopodoby fukcjoał jako fukcjoał Lapuowa V() = ( w +β w) +β w + w f w d o () Jeżeli = β fukcjoał () jes pełą eergią układu. Przy sałej składowej siły osiowej f miejszej od siły kryyczej Eulera fukcjoał jes dodaio określoy a miarę odległości
5 45 rozwiązaia zaburzoego od prosoliiowego sau rówowagi określimy w asępujący sposób w. = (3) ( ) V Z racji przyjęych założeń o właściwościach współczyików rówaia ruchu pochodą fukcjoału () względem czasu obliczamy w klasyczy sposób = ( w w) w w ww w w fow w d d +β +β + β + (4) Słabe rówaie () dyamiki belki zachodzi dla każdej fukcji Φ spełiającej podsawowe waruki brzegowe. Zaem jes rówież spełioe dla Φ = βw i prawdziwa jes pierwsza ożsamość w w ww w fo w f () w β + β +β β β d = (5) Podobie podsawieie Φ = w prowadzi do drugiej ożsamości w w w w w fow w f () w w +β + d = (6) W celu przekszałceia pochodej (4) odejmujemy lewe sroy ożsamości (5) i (6) orzymując po przekszałceiach algebraiczych = β β +β + +β d w w fow f ()( w w ) w d (7) Aby orzymać góre oszacowaie pochodej fukcjoału przekszałcamy ją do posaci = βv + U (8) d gdzie pomociczy fukcjoał U ma posać 3 U = w ww fow f ()( w w ) w d β + β +β + +β (9) Poszukujemy losowej fukcji czasu λ ( ) spełiającej ierówość lub w posaci jawej λ V U () 3 λ ( w +β w) +β w + w fow β w + ()( ) β β +β ww fow f w w w d Podsawieie ierówości () do rówaia (8) daje ierówość różiczkową pierwszego rzędu względem fukcjoału V () ( β λ)v () d
6 46 Rozwiązaie ierówości różiczkowej () przedsawia wzór Zaem jeżeli o V () V ( ep ) β λ( τ) dτ β lim λ τ τ lim u. (3) ( ) d (4) ( ) = Tym samym zachodzi wówczas prawie pewa saeczość prosoliiowego sau belki. Uśrediaie po czasie w ierówości (4) moża zasąpić uśrediaiem po przesrzei probabilisyczej jeżeli siła osiowa jes procesem sacjoarym i ergodyczym. Podsawowa ierówość (4) może być zapisaa jako [ λ( τ) ] (5) β E (6) 4. Wyzaczeie fukcji λ Jeżeli belka jes swobodie podpara o rozwiązaie rówaia moża przedsawić w posaci ieskończoego szeregu ( ) w ( ) si π w = Podobie ugięcie belki obusroie uwierdzoej dae jes wzorem = ( ) w () ξ ( ) = w ()( [ si β si hβ ) ( cosβ cos hβ ) w = = = ( si β si hβ )( cosβ cos hβ)] (8) gdzie począkowe wyrazy ciągu { β } dae są w abeli. Poado graica moooiczie rosącego ciągu { κ } jes rówa. Tabela Warości włase i sałe wysępujące w związkach (8) i (9) β κ Ławo sprawdzić że posacie włase spełiają asępujący ciąg rówości + (7) ξ ( ) d = κβ ξ ( ) d (9)
7 β 47 ξ ( ) d = ξ( ) d (3) gdzie ciąg { κ } jes day w ab.. Podsawiając szereg (8) do ierówości () i korzysając z orogoalości posaci drgań ξ ( ) = { λ w + λβ β f ( ) + κ ( κ β ) w+ 3 [ λβ β + ( λβ / κ λf βf () ) κ β ] w } Nierówość (3) będzie spełioa jeżeli wszyskie składiki sumy są dodaie czyli gdy dla każdego współczyiki formy kwadraowej względem w i w spełiają ierówość β λ w ( λ β) f ( ) κ β ( λ β) f ( ) κ β / β ( λ β) λβ / κ λf βf ( ) β / ( ) κ β Zaem rozwiązując ierówość kwadraową względem fukcji λ mamy lub gdy belka jes swobodie podpara λ / () / [ β κ ( β / κ f ) + β ] > (3) (3) = β + κβ f (33) λ / () / [ π ( π f ) + β ] = β + π f (34) Zaem a podsawie ierówości (6) warukiem wysarczającym prawie pewej saeczości prosoliiowej belki w słabym sformułowaiu jes ierówość β E ma λ() Arykuł przygoowao w ramach Badań Własych Poliechiki Warszawskiej Nr 53/G/5/7. Lieraura [] B a k s H.T. F a g W. S i l c o R.J. S m i h R.C. Approimaio mehods for corol of srucural acousics models wih piezoelecric acuaors Joural of Iellige Maerial Sysems ad Srucures Vol [] K o z i F. Sabiliy of he liear sochasic sysem Lecure Noes i Mahemaics Vol [3] Tylikowski A. Hearski R.B. Thermally iduced isabiliy of lamiaed beams ad plaes ASME J. Appl. Mech. Vol [4] Tylikowski A. Sabilizaio of plae parameric vibraios via disribued corol J. Theor. Appl. Mech. Vol
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 0: Rówaie Schrödigera Dr iż. Zbigiew Szklarski Kaedra Elekroiki paw. C- pok.3 szkla@agh.edu.pl hp://layer.uci.agh.edu.pl/z.szklarski/ Rówaie Schrödigera jedo z podsawowych rówań ierelaywisyczej
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
7 Wyzaczyć zbiór wszyskich warości rzeczywisych parameru p, dla kórych całka iewłaściwa jes zbieża x xe Dzieląc przedział całkowaia orzymujemy x x e x x e x x e Zbadamy, dla kórych warości parameru p całki
Sygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 1 Pla wykładu Co to są szeregi Fouriera? Sposoby budowaia rozwiązań mającyc postać szeregów Rówaiepłyty Ilustracja metody szeregów Fouriera a przykładzie zgiaej płyty. 1
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Układy liniowosprężyste Clapeyrona
Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
DYNAMIKA. Dynamika jest działem mechaniki zajmującym się badaniem ruchu ciał z uwzględnieniem sił działających na ciało i wywołujących ten ruch.
DYNMIK Daika jes działe echaiki zajując się badaie uchu ciał z uwzględieie sił działającch a ciało i wwołującch e uch. Daika opiea się a pawach Newoa, a w szczególości a dugi pawie (zwa pawe daiki). Moża
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Niepewności pomiarowe
Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION
JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a
WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że
7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,
7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia
Rozdział 5: Drgania liniowych układów ciągłych
WYKŁAD 9 Rozdział 5: Drgaia iiowych układów ciągłych zęść 1: Drgaia swobode stru, prętów i wałów 5.1. Wiadomości wstępe o ciągłych układach drgających W dotychczasowych rozważaiach rozpatrywaiśmy układy
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Opis ruchu we współrzędnych prostokątnych (kartezjańskich)
Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Szkic do wykładów z mechaniki analitycznej
Szkic do wykładów z mechaiki aalityczej prof. dr hab. Bogda Maruszewski pokój 408 BM e-mail: bogda.maruszewski@put.poza.pl www: http://tm.am.put.poza.pl kosultacje: poiedziałek 11 00 12 00 Politechika
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Planowanie doświadczeń - DPLD LMO Materiały pomocnicze
Plaowaie doświadczeń - DPLD LMO Materiały pomocicze Układ bloków kompletie zradomizowaych Założeia: (a) Z jedostek doświadczalych tworzymy rówolicze grupy zwae blokami (b bloków) w taki sposób, aby jedostki
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Przyjęto następujące założenia: zakłada się płaski stan odkształcenia; ośrodek gruntowy jest ważki i posiada jednorodne cechy;
Górictwo i Geoiżyieria Rok 33 Zeszyt 9 Magdalea Osławska*, Wojciech Puła** ANALIZA STATECZNOŚCI ŚCIAN KOTWIONYCH ZAGŁĘBIONYCH W GRUNTACH SPOISTYCH METODĄ RACHUNKU WARIACYJNEGO. Wstęp Pod koiec lat 7. XX
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
Zasada działania, właściwości i parametry światłowodów. Sergiusz Patela Podstawowe właściwości światłowodów 1
Zasada działaia, właściwości i parametry światłowodów Sergiusz Patela 1999-003 Podstawowe właściwości światłowodów 1 Parametry światłowodów - klasyfikacja Parametry włókie światłowodowych: 1. Optycze tłumieie,
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
GENERALISED TRANSMISSION MODEL OF FIRST ORDER PARAMETRIC SECTION
ELEKTRYKA 212 Zeszy 3-4 (223-224) Ro LVIII Aa PIWOWAR Jausz WALCZAK Isyu Eleroechii i Iformayi Poliechia Śląsa w Gliwicach MODEL TRANSMISYJNY UOGÓLNIONEJ SEKCJI LTV PIERWSZEGO RZĘDU Sreszczeie. W aryule
MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Ekonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
BADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Istrukcja do ćwiczeia r 3 BADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA. Cel ćwiczeia Celem ćwiczeia jest pozaie szeregu zjawisk związaych z drgaiami
( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM
Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o.
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 06/07 MATEMATYKA POZIOM ROZSZERZONY Zasady oceiaia rozwiązań zadań Copyright by Nowa Era Sp z oo Próby egzami maturaly z Nową Erą Uwaga: Akceptowae są wszystkie odpowiedzi
Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych.
Przełączaie diody 1. Trochę eorii a przejściowy pomiędzy saem przewodzeia diod, a saem ieprzewodzeia opisuje się za pomocą parameru/ów czasowego/ych. Mamy więc ajprosszy eleme półprzewodikowy (dwójik),
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Szacowanie składki w ubezpieczeniu od ryzyka niesamodzielności
Skłaki w ubezpieczeiu o ryzyka iesamozielości EDYTA SIDOR-BANASZEK Szacowaie skłaki w ubezpieczeiu o ryzyka iesamozielości Kalkulacja skłaki w ubezpieczeiach jes barzo ważym zagaieiem związaym z maemayką