DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION

Wielkość: px
Rozpocząć pokaz od strony:

Download "DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION"

Transkrypt

1 JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie dwiema siłami rzyłoŝoymi w sosób agły oraz dwoma imulsami. VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION This aer resets method to obtai vibratios of beam with two-arameter elastic foudatio uder symmetric dyamic loadig. 1. WSTĘP Rozatrzmy belkę soczywającą a dwuarametrowym odłoŝu sręŝystym o więzach dwustroych. Zakładamy, Ŝe zaa jest masa belki, sztywości odłoŝa oraz rzyjmujemy, Ŝe działające siły są bezmasowe a odłoŝe jest ieiercyje. Na Rys. 1. okazao rozatrywaą belkę, którą z ewym rzybliŝeiem moŝa traktować, jako uroszczoy model odkładu kolejowego, a który ośredio działają gwałtowie rzyłoŝoe siły skuioe. Przyjęty model odłoŝa jest oisay rówaiem (or. [1]): w = k1w k, (1) x gdzie w jest rzemieszczeiem, a k 1, k ozaczają sztywości odowiedich warstw i wyraŝoe są w jedostkach odowiedio m N, [ ] N. 1 Politechika Warszawska Wydział IŜyierii Lądowej, Katedra Mechaiki Budowli i Zastosowań Iformatyki, Al. Armii Ludowej 16, -67 Warszawa, Tel. () -65-, Fax. () ; SGGW, Wydział Budowictwa i IŜyierii Środowiska, Katedra IŜyierii Budowlaej, ul. Nowoursyowska 159, -776 Warszawa,Tel./Fax: (+8) , g.jemielita@il.w.edu.l Politechika Warszawska Wydział IŜyierii Lądowej, Katedra Mechaiki Budowli i Zastosowań Iformatyki, Al. Armii Ludowej 16, -67 Warszawa, Tel. () -6-1, Fax. () , z.kozyra@il.w.edu.l

2 16 Grzegorz JEMIELITA, Zofia KOZYRA x PH(t-to) PH(t-to) x k1 k k 1 5 l=5 mm Rys.1. Schemat aalizowaej kostrukcji. RÓWNANIE RÓśNICZKOWE Rówaie róŝiczkowe drgań belki o stałej sztywości soczywającej a odłoŝu sręŝystym jest ostaci: w w w + k1w k + µ = q( x, t), () x x w której µ jest gęstością masy belki a jedostkę długości. Niech w chwili t w uktach o wsółrzędych ( x ) i ( l x ) zostaą agle rzyłoŝoe do belki siły bezmasowe P. ObciąŜeie to moŝa zaisać astęująco: gdzie: H - fukcja Heaviside a, δ - dystrybucja Diraca. ( x, t) = P H ( t t )[ ( x x ) + δ ( x l x )] q δ +, () x Wrowadzając wsółrzędą bezwymiarową ξ = rówaie () zaisujemy w ostaci: l w w ˆ w Pl γ + w + λ = t w której wrowadzoo astęujące, bezwymiarowe wsółczyiki: [ δ ( ξ ξ ) + δ ( ξ ( 1 ξ ))] H ( t ), ()

3 DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM 16 l γ =, k 1l = oraz k l λ = [ ] ˆ µ s. (5) Szukamy ugięcia rzy t zaisujemy astęująco: t >, tj. wtedy, gdy ( t t ) = 1 H. W tym rzyadku rówaie () w w ˆ w Pl γ + w + λ = ξ [ δ ( ξ ξ ) + δ ( ξ ( 1 ))] (6) Rozwiązaie tego rówaia rzy jedorodych warukach oczątkowych rzewidujemy w ostaci w której w w( ξ, t ) =, ( ξ, t ) = (7) w ( ξ, t) w ( ξ ) + w ( ξ t) =, (8) s d, w s jest całką szczególą będącą rozwiązaiem rówaia (or. [,]): ws d ws d Pl γ + w = [ δ ( ξ ξ ) + δ ( ξ ( 1 ξ ))] s. (9) dξ dξ Postać rozwiązaia owyŝszego rówaia zaleŝy od wartości wsółczyików γ i. Pierwiastki rówaia charakterystyczego rówaia (9) są rówe: 1,,, = ± γ ± γ r. (1) PoiewaŜ wsółczyiki γ,, to mamy ięć rzyadków i ięć ostaci rozwiązaia jedorodego rówaia (9), a miaowicie: 1. rzy γ > > otrzymujemy rówaie ugięcia w ostaci: w której ( αξ ) + C sh( αξ ) + C ch( βξ ) C sh( βξ ) w s = C 1 ch +, (11) α = γ + γ, β = γ γ. (1). rzy γ <, otrzymujemy

4 16 Grzegorz JEMIELITA, Zofia KOZYRA ( εξ ) ( ηξ ) + C ch( εξ ) si( ηξ ) + C sh( εξ ) cos( ηξ ) C ( εξ ) si( ηξ ) w s = C1ch cos + sh, (1) gdzie ε = + γ, η = γ, (1). rzy =, α = γ, β = fukcja. rzy γ =, otrzymujemy, a rozwiązaiem rówaia róŝiczkowego jest ( ) + C sh( αξ ) + C αξ w s = C1ch αξ + C. (15) α = β = γ (16) oraz ( γ ξ ) + C sh( γ ξ ) + ξ γ [ C ch( γ ξ ) C sh( γ ξ )] w s = C 1 ch + (17) 5. dla γ = mamy astęującą fukcję w s w s = C1ch ξ cos ξ + C + sh ξ si ξ. (18) + + C ξ ξ ξ cos ξ ch si C sh Całka w d ( ξ,t) jest rozwiązaiem rówaia: wd w γ d + w d ˆ w + λ d =. (19) Przedstawiając rozwiązaie rówaia (19) w ostaci iloczyu fukcji zmieej ξ F t rzestrzeej w ( ) i fukcji zmieej czasu ( ) w d ( t) = w ( ξ ) F( t) ξ, ()

5 DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM 165 otrzymujemy astęujące dwa rówaia: oraz w IV ( ξ ) γ w + ( λ ) w rzy czym bezwymiarowy wsółczyik λ wyraŝamy wzorem = (1) d F + F = ω, () dt µ l ˆ λ = ω = λ ω >. () Częstości drgań własych ω i zajdziemy z rozwiązaia rówaia (1). Pierwiastki rówaia charakterystyczego tego rówaia są rówe Rozatrzmy astęujące rzyadki: 1,,, = ± γ ± γ + λ r () a) γ > > λ Rozwiązaie rówaia (1) zaisujemy astęująco: w którym teraz ozaczoo ( αξ ) + C sh( ˆ αξ ) + C ch( ˆ βξ ) C ( ˆ βξ ) ˆ w = C1ch + sh, (5) ˆ α = γ + γ + λ, ˆ β = γ γ + λ, (6) b) < λ ~ ~ ( αξ ) + C sh( ˆ αξ ) + C cos( βξ ) si( βξ ) 1 ˆ C w = C ch +, (7) gdzie ~ β = γ + γ + λ (8)

6 166 Grzegorz JEMIELITA, Zofia KOZYRA c) > γ + λ gdzie ( εξ ) cos( ˆ ηξ ) + C ch( ˆ εξ ) si( ˆ ηξ ) + C sh( ˆ εξ ) cos( ˆ ηξ ) C ( ˆ εξ ) si( ˆ ηξ ) C1ch ˆ sh w s = +, (9) ˆ = ( λ ) γ, η = ( λ ) γ ε + Wykorzystując astęujące waruki brzegowe: ( ) = M ( 1) = czyli w ( ) = w ( 1) = ˆ, () M, (1) ( ) = T ( 1) = czyli w ( ) = w ( 1) = T. () otrzymamy jedorody algebraiczy układ rówań do wyzaczeia stałych C 1, C, C, C. Z rzyrówaia do zera wyzaczika główego tego układu otrzymujemy częstości drgań własych i ω oraz fukcje włase ( ξ ) i w. Rozwiązaiem rówaia () są fukcje: F ( t) = A cos[ ( t t )] + B [ ω ( t t )] ω si () Po wykorzystaiu waruków oczątkowych (7), rozwiązaie zagadieia rzedstawiamy w ostaci. WYZNACZENIE FUNKCJI w ( ξ ) i (, t) = w ( ξ ) + w ( ξ ) F ( t) s i= 1 w ξ rzy t t. () s Przyjmując, Ŝe sełioa jest ierówość γ > oraz wykorzystując symetrię zagadieia fukcję ugięcia zaisujemy astęująco: i w s w1 = C1ch = w = C5ch ( αξ ) + C sh( αξ ) + C ch( βξ ) + C sh( βξ ) ( αξ ) + C sh( αξ ) + C ch( βξ ) + C sh( βξ ) dla dla x ξ ξ = l. (5) 1 ξ ξ

7 DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM 167 Stałe wyzaczamy z waruków brzegowych i waruków ciągłości w ostaci: M 1 ( ) = w1 ( ) =, (6) l T 1 ( ) = w1 ( ) =, (7) l ( ξ ) w ( ) w =, (8) 1 ξ ( ξ ) = w ( ) w, (9) 1 ξ M ( ξ ) = M ( ) czyli w ( ξ ) = w ( ) 1 ξ, () 1 ξ ( ξ ) T ( ) P czyli w ( ) w ( ξ ) T = 1 ξ Pl ξ 1, (1) = 1 w =, () 1 1 T = w = () l PoiewaŜ wzory a te stałe są bardzo rozbudowae, wyzaczaie drgań układu aleŝy rzerowadzać a rzykładach liczbowych.. DZIAŁANIE IMPULSU Rozatrzmy działaie imulsów rzyłoŝoych w chwili t a belkę w sosób symetryczy (or. Rys..). Drgaia wywołae dwoma imulsami moŝa otrzymać korzystając z astęującego wzoru: w K K w =, () P t w którym imuls K = lim P t = cost. t

8 168 Grzegorz JEMIELITA, Zofia KOZYRA x Kd(t-to) Kd(t-to) x k1 k k l=5 mm Rys..Schemat belki obciąŝoej imulsami 5. BIBLIOGRAFIA [1] Jemielita G.: Goverig equatios ad boudary coditios of geeralized model of elastic foudatio. J. Theor. Al. Mech.,,(199), [] Kączkowski Z.: Płyty. Obliczeia statycze, Arkady. [] Jemielita G., Kozyra Z., Statics of beam with arbitrary stiffess restig o a variable, uidirectioal, two-arameter foudatio; Theoretical Foudatios of Civil Egieerig. Polish-Ukraiia-Lithuaia Trasactios, Warsaw, 1,. 1-15, Ed. by W. Szcześiak, OWPW, ISBN

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 2

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 2 Laboratorium Modelowaia i symulacji 008 r. Wydział Elektryczy Zesół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie Rozwiązywaie rówań róŝiczkowych zwyczajych metodą klasyczą.

Bardziej szczegółowo

Rozdział 5: Drgania liniowych układów ciągłych. , częstości własnych

Rozdział 5: Drgania liniowych układów ciągłych. , częstości własnych WYKŁAD Rozdział 5: Drgaia iiowych układów ciągłych Część : Drgaia wymuszoe eek 5.8. Drgaia eki wymuszoe rozłożoą siłą harmoiczą Rozatrzmy teraz ekę dowoie odartą a ou swych końcach, ez dołączoych uktów

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Rówaia różiczkowe Niech F: +, y: Def. Rówaiem różiczkowym zwyczajym rzędu azywamy rówaie postaci F(,y,y,y,, y () ) = (*) Rozwiązaiem rówaia (*) azywamy każdą fukcję y=y() taką, że po wstawieiu do rówaia

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5 Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************

Bardziej szczegółowo

MATEMATYKA cz. 4 Szeregi funkcyjne i równania róŝniczkowe zwyczajne

MATEMATYKA cz. 4 Szeregi funkcyjne i równania róŝniczkowe zwyczajne Ja Nawrocki MATEMATYKA cz. 4 Szeregi fukcyje i rówaia róŝiczkowe zwyczaje Politechika Warszawska 010 Politechika Warszawska Wydział Samochodów i Maszy Roboczych Kieruek "Edukacja techiczo iformatycza"

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 1 Pla wykładu Co to są szeregi Fouriera? Sposoby budowaia rozwiązań mającyc postać szeregów Rówaiepłyty Ilustracja metody szeregów Fouriera a przykładzie zgiaej płyty. 1

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Stochastyczne metody optymalizacji

Stochastyczne metody optymalizacji Stochastycze metody otymalizacji I a b b a b = a d Metoda rostokątów N N i i= 0 i= 0 d = σ = h y Metoda traezów d h y y N 0 + ( ) = + yi i= Metoda Simsoa i ξ [ a, b] b h = 0 3 4 5 4 3 a ( b a) R = ( ξ

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności

Estymacja przedziałowa - przedziały ufności Estymacja rzedziałowa - rzedziały ufości Próbę -elemetową charakteryzujemy jej arametrami ( x, s, s ). SłuŜą oe do ocey wartości iezaych arametrów oulacji (m, σ, σ). Nazywamy je estymatorami uktowymi iezaych

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy, Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Mechanika analityczna. Małe drgania układów zachowawczych

Mechanika analityczna. Małe drgania układów zachowawczych Mechanika analityczna. Małe drgania układów zachowawczych. Drgania swobodne układów o jednym stopniu swobody.. Wprowadzenie teoretyczne Załóżmy, że układ materialny o jednym stopniu swobody i więzach idealnych,

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. 7-34, Gliwice 007 DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA ANDRZEJ BUCHACZ, SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Rozdział 4 Model teoretyczny 40

Rozdział 4 Model teoretyczny 40 4. Model teoretyczy ozdział 4 Model teoretyczy 4 4. ówaia fizycze. Klasycze odele teoretycze oisujące zachowaie się betou zwye ostulują istieie lastyczości tego ateriału [7, 5]. W ostatich latach coraz

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Przyjęto następujące założenia: zakłada się płaski stan odkształcenia; ośrodek gruntowy jest ważki i posiada jednorodne cechy;

Przyjęto następujące założenia: zakłada się płaski stan odkształcenia; ośrodek gruntowy jest ważki i posiada jednorodne cechy; Górictwo i Geoiżyieria Rok 33 Zeszyt 9 Magdalea Osławska*, Wojciech Puła** ANALIZA STATECZNOŚCI ŚCIAN KOTWIONYCH ZAGŁĘBIONYCH W GRUNTACH SPOISTYCH METODĄ RACHUNKU WARIACYJNEGO. Wstęp Pod koiec lat 7. XX

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA

ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 255-26, Gliwice 26 ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA RYSZARD KORYCKI DARIUSZ WITCZAK Katedra Mechaiki

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Zasada działania, właściwości i parametry światłowodów. Sergiusz Patela Podstawowe właściwości światłowodów 1

Zasada działania, właściwości i parametry światłowodów. Sergiusz Patela Podstawowe właściwości światłowodów 1 Zasada działaia, właściwości i parametry światłowodów Sergiusz Patela 1999-003 Podstawowe właściwości światłowodów 1 Parametry światłowodów - klasyfikacja Parametry włókie światłowodowych: 1. Optycze tłumieie,

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH

PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH WŁADYSŁAW KIERAT Oliver Heaviside w latach 1893-1899 opublikował trzytomową monografię: Elektromagnetic Theory,

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Wyznaczanie rozwiązań kompromisowych wieloosobowych gier kooperacyjnych w postaci analitycznej

Wyznaczanie rozwiązań kompromisowych wieloosobowych gier kooperacyjnych w postaci analitycznej Bi u l e t y WAT Vo l LX, r 4, 20 Wyzaczaie rozwiązań komromisowych wieloosobowych gier kooeracyjych w ostaci aalityczej Adrzej Ameljańczyk Wojskowa Akademia Techicza, Wydział Cyberetyki, 00-908 Warszawa,

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ). FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe

Bardziej szczegółowo

Rozdział 5: Drgania liniowych układów ciągłych

Rozdział 5: Drgania liniowych układów ciągłych WYKŁAD 9 Rozdział 5: Drgaia iiowych układów ciągłych zęść 1: Drgaia swobode stru, prętów i wałów 5.1. Wiadomości wstępe o ciągłych układach drgających W dotychczasowych rozważaiach rozpatrywaiśmy układy

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

W(s)= s 3 +7s 2 +10s+K

W(s)= s 3 +7s 2 +10s+K PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x. LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

D l. D p. Rodzaje baz jezdnych robotów mobilnych

D l. D p. Rodzaje baz jezdnych robotów mobilnych ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo