Poziom rozszerzony. 5. Ciągi. Uczeń:
|
|
- Paweł Wysocki
- 8 lat temu
- Przeglądów:
Transkrypt
1 PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia techicze, zajęcia komputerowe, iormatyka Poziom rozszerzoy 5 Ciągi Uczeń: 1 wyzacza wyrazy ciągu określoego wzorem rekurecyjym; oblicza graice ciągów, korzystając z graic ciągów typu 1/, 1/ oraz z twierdzeń o działaiach a graicach ciągów; rozpozaje szeregi geometrycze zbieże i oblicza ich sumy 11 Rachuek różiczkowy Uczeń: 1 oblicza graice ukcji (i graice jedostroe), korzystając z twierdzeń o działaiach a graicach i z własości ukcji ciągłych; oblicza pochode ukcji wymierych; korzysta z geometryczej i izyczej iterpretacji pochodej; 4 korzysta z własości pochodej do wyzaczeia przedziałów mootoiczości ukcji; 5 zajduje ekstrema ukcji wielomiaowych i wymierych; 6 stosuje pochode do rozwiązywaia zagadień optymalizacyjych Kometarz do podstawy programowej przedmiotu matematyka Zbigiew Semadei, Marci Karpiński, Krystya Sawicka, Marta Jucewicz, Aa Dubiecka, Wojciech Guzicki, Edward Tutaj: O tym, jaka będzie wykładia podstawy programowej, zadecyduje praktyka auczaia i praktyka egzamiów maturalych Po kilku latach ukcjoowaia owej podstawy programowej, w wyiku współdziałaia szkoły, komisji egzamiacyjych i uczeli wyższych, ustali się pewie poziom iterpretowaia i realizowaia obowiązujących wymagań
2 ZALECANE WARUNKI I SPOSÓB REALIZACJI W przypadku ucziów zdolych, moża wymagać większego zakresu umiejętości, jedakże wskazae jest podwyższaie stopia trudości zadań, a ie poszerzaie tematyki Rodzaje zadań egzamiacyjych w arkuszu maturalym a poziomie rozszerzoym: 1 Zadaia zamkięte (wielokrotego wyboru lub prawda ałsz) Zadaia z kodowaą odpowiedzią Zadaia otwarte krótkiej odpowiedzi 4 Zadaia otwarte rozszerzoej odpowiedzi Przykłady: Zadaie 1 Szereg geometryczy Day jest ieskończoy ciąg geometryczy a określoy dla 1, o ilorazie wszystkich wyrazów tego ciągu jest rówa 6 Oblicz a a1 Zakoduj odpowiedź q Suma a1 Ze wzoru a sumę wszystkich wyrazów ieskończoego ciągu geometryczego S 1 q dla q 1 obliczamy a 1 : a1 6, stąd a a a1 q Zatem a a Schemat oceiaia zadaia z kodowaa odpowiedzią Zdający otrzymuje pkt gdy zakoduje trzy cyry otrzymaego wyiku: cyry 1,1,1
3 Zadaie Graica ciągu Oblicz graicę Zakoduj odpowiedź Obliczamy graicę W arkuszu odpowiedzi ależy zakodować cyry 0,1,6 Schemat oceiaia zadaia z kodowaa odpowiedzią Zdający otrzymuje pkt gdy zakoduje trzy cyry obliczoej graicy: cyry 0,1,6 Zadaie Graica ciągu Ciąg a określoy jest wzorem jakiej wartości p graica ciągu a a 7 p 1 p p 1 p Wyzaczamy graicę ciągu a w zależości od p: jest rówa 0 Zakoduj odpowiedź p p 7p1 7 p 1 p p 7p 1 1 p 1 p p Rozwiązujemy rówaie 7p 1 0 p 1 p 7 W arkuszu odpowiedzi ależy zakodować cyry 0,1,4 Schemat oceiaia zadaia z kodowaa odpowiedzią dla 1 i p 0 Oblicz, dla Zdający otrzymuje pkt gdy zakoduje trzy cyry obliczoej graicy: cyry 0,1,4
4 Zadaie 4 Graica ciągu Ciągi a, b określoe są astępująco: Oblicz graicę a b a Zakoduj odpowiedź 1 oraz b 115, dla 1 Obliczamy graicę W arkuszu odpowiedzi ależy zakodować cyry,5,0 Schemat oceiaia zadaia z kodowaa odpowiedzią Zdający otrzymuje pkt gdy zakoduje trzy cyry obliczoej graicy: cyry,5,0 Ciągi a, a Oblicz b b określoe są dla 1 Zakoduj odpowiedź Zadaie 5 Graica ciągu Obliczamy graicę wzorami: a 5 oraz b W arkuszu odpowiedzi ależy zakodować cyry 0,,7 Schemat oceiaia zadaia z kodowaa odpowiedzią Zdający otrzymuje pkt gdy zakoduje trzy cyry obliczoej graicy: cyry 0,,7 Zadaie 6 Graica ukcji Daa jest ukcja określoa wzorem rówa x x x dla x Graica x x jest A B 1 C 0 D
5 : Obliczamy 4 1 Odp: B Zadaie 7 Graica ukcji 16 x Daa jest ukcja określoa wzorem x x 4 rówa A B 0 C 8 D : Przekształcamy wzór daej ukcji: x x 16 x x 4 4 x4 x 4 i obliczamy graicę: x x4 x4 x 4 x 4 x 4 x4 x 4 8 dla x 4 Graica x4 x jest Odp: C Zadaie 8 Pochoda ukcji w pukcie Daa jest ukcja określoa wzorem x x dla x Graica x x x jest rówa A B 0 C 6 D : Obliczamy graicę: x x x x x Odp: A
6 Zadaie 9 Pochoda ukcji w pukcie Fukcja jest określoa jest wzorem ukcji dla x Zakoduj odpowiedź x 5 1 ( x) x 1 dla 1 x Oblicz wartość pochodej Przekształcamy wzór ukcji i obliczamy pochodą tej ukcji: 5 x 1 5x x 5 ( x) x1 x1 5x x 5 x 1 5x x 5 x 1 x x 1 5x x 5 x x1 x1 x x0 x x x1 x1 40 Zatem 1,6 5 W arkuszu odpowiedzi ależy zakodować cyry 1,6,0 Schemat oceiaia zadaia z kodowaa odpowiedzią Zdający otrzymuje p gdy zakoduje trzy cyry otrzymaego wyiku: cyry 1,6,0 Zadaie Rówaie styczej Daa jest ukcja określoa wzorem x 1 x x 1 dla x R i leżący a wykresie tej ukcji pukt A o współrzędej x rówej Wyzacz rówaie styczej do wykresu ukcji w pukcie A y x w pukcie A x0, x0, gdzie współczyik kierukowy a jest rówy Stycza do wykresu ukcji o wzorze postaci y ax b x 1 x x 1 oraz x0 przypadku ma rówaie a x 0 W aszym
7 Mamy zatem x x 4x, skąd dostajemy, czyli,, a 4 Pukt A ma współrzęde A Prosta o rówaiu y x b ma przechodzić przez pukt A, więc b Zatem b 1 i ostateczie rówaie styczej ma postać y x 1 Schemat oceiaia, w którym jest istoty postęp 1 pkt Wyzaczeie pochodej ukcji: x x 4x Pokoaie zasadiczych trudości zadaia pkt Obliczeie współczyika kierukowego styczej: a pełe pkt Wyzaczeie rówaia styczej do wykresu ukcji w pukcie A: y x 1 Zadaie 11 Mootoiczość 1 Fukcja daa jest wzorem x x mx 4x 1 Wyzacz wszystkie wartości parametru m, dla których ukcja jest rosąca w całej dziedziie Obliczamy pochodą ukcji : ' x x mx 4 Na to by ukcja była rosąca w całej dziedziie wystarczy, by pochoda ukcji, przyjmowała wartości dodatie dla wszystkich x D Obliczamy wyróżik trójmiau m m x mx i wyzaczamy te wartości parametru m, dla których te wyróżik jest ujemy m, Dla, m pochoda ukcji jest dodatia dla wszystkich x D, a więc ukcja jest rosąca w tym zbiorze Poieważ 1,, dla m 1, ukcja jest rosąca Schemat oceiaia, w którym jest istoty postęp 1 pkt Obliczeie pochodej ukcji : ' x x mx 4 Pokoaie zasadiczych trudości zadaia pkt Zapisaie waruku a to, żeby ukcja była rosąca w całej dziedziie: pochoda ukcji ma przyjmować wartości dodatie dla wszystkich x D pełe pkt Wyzaczeie wszystkie wartości parametru m, dla których ukcja jest rosąca w całej dziedziie: m,
8 Zadaie 1 Optymalizacja Rozpatrujemy wszystkie prostopadłościay, w których przekąta ma długość d oraz stosuek długości krawędzi podstawy jest rówy :4 Wyzacz długości krawędzi podstawy tego z rozpatrywaych prostopadłościaów, który ma ajwiększe pole powierzchi boczej Ozaczmy przez h wysokość prostopadłościau, a przez x oraz 4x długości krawędzi jego podstawy Korzystając z twierdzeia Pitagorasa wyzaczamy długość c przekątej podstawy, c x 4x 5x, oraz zapisujemy zależość d h 5x h 5x (1) Pole P powierzchi boczej tego prostopadłościau jest rówe P 14xh Z rówości (1) wyzaczamy zależość h od x : h d 5x, określamy ukcję Px ( ) opisującą pole powierzchi boczej prostopadłościau w zależości od x : d dla 0, 5 P( x) 14x d 5x x Wzór tej ukcji zapiszemy w postaci 4 d dla 0, 5 P( x) 14 d x 5x x Rozważmy ukcję pomociczą określoą wzorem 4 d dla x 0, 5 ( x) d x 5x Z aktu, że ukcja g() t t jest rosąca w 0; wyika, że ukcje P oraz są rosące (malejące) w tych samych przedziałach oraz mają ekstrema lokale (tego samego rodzaju) dla tych samych argumetów d Wyzaczymy wartość ajwiększą ukcji w przedziale 0, 5 Obliczamy pochodą ukcji : ( x) d x 0x x d 50x d W przedziale 0, 5 pochoda ma jedo miejsce zerowe d x,
9 ( x) 0 dla ( x) 0 dla d x 0,, d d x, 5 Wyika stąd, że dla d x ukcja ma maksimum lokale i jest to jedocześie wartość ajwiększa, bo w przedziale d,0 ukcja jest malejąca d 0, ukcja jest rosąca, a przedziale Odpowiedź: Długości krawędzi podstawy prostopadłościau, który ma ajwiększe pole powierzchi boczej to: d Uwaga, d 5 1 Zdający z rówości (1) może wyzaczyć zależość x od h : x d h, otrzymując 5 ukcję Ph ( ) opisującą pole powierzchi boczej prostopadłościau w zależości od h: 14 P( h) h d h 5 dla h 0, d Fukcja ta przyjmuje ajwiększą wartość dla d h Metoda rozwiązaia w tym przypadku jest aalogicza Schemat oceiaia zadaia składa się z trzech etapów a) Pierwszy etap składa się z trzech części: zastosowaie twierdzeia Pitagorasa i zapisaie, że c x 4x 5x d h 5x oraz zapisaie pola P powierzchi boczej prostopadłościau jako ukcji jedej zmieej P( x) 14x d 5x, zapisaie, że dziedzią ukcji d jest przedział 0, 5 P( x) 14x d 5x
10 Za poprawe rozwiązaie każdej z części tego etapu zdający otrzymuje 1 pukt, o ile poprzedia część etapu została zrealizowaa bezbłędie b) Drugi etap składa się z trzech części: zapisaie wzoru pochodej ukcji, p: ( x) d x 0x xd 50x zapisaie, że w przedziale d 0, 5, pochoda ukcji ' ma jedo miejsce zerowe d x, d zapisaie wraz z uzasadieiem, że dla x ukcja P osiąga ajwiększą wartość d Oczekujemy, że zdający po zapisaiu, że w pukcie x ukcja P osiąga maksimum lokale, uzasadi, że maksimum lokale jest jedocześie ajwiększą d wartością tej ukcji Wystarczy, jeżeli zdający zapisze, że w przedziale 0, ukcja P jest rosąca, zaś w przedziale d,0 jest malejąca Za poprawe rozwiązaie każdej z części tego etapu zdający otrzymuje 1 pukt, o ile poprzedia część etapu została zrealizowaa bezbłędie c) Trzeci etap 1 pukt zdający otrzyma za zapisaie długości krawędzi podstawy prostopadłościau o ajwiększym polu powierzchi boczej: d Uwaga:, d 5 Pukty za realizację daego etapu przyzajemy tylko wówczas, gdy zdający rozwiązał poprawie poprzedi etap zadaia Zadaie 1 Własość Darboux Fukcja określoa jest wzorem rówaia x 1 Obliczamy pochodą ukcji : x x x 6 Wyzacz liczbę rozwiązań
11 x 1x 6 x x 1 x 6x 6 x 4 x 6x x 6x Wyzaczamy ekstrema lokale ukcji Miejscami zerowymi pochodej są liczby 6 i Rozwiązujemy ierówości x 0 oraz x 0 i otrzymujemy: x 0 x, 6, oraz x 0 x6, Dla x 6spełioy jest waruek wystarczający istieia ekstremum i jest to maksimum lokale, które jest rówe 6 0 Dla x rówież spełioy jest waruek wystarczający istieia ekstremum i jest to miimum lokale, które jest rówe Fukcja przyjmuje wartości dodatie tylko dla x i jest w tym przedziale rosąca Wyika stąd, że rówaie x 1 ma dokładie jedo rozwiązaie Schemat oceiaia, w którym jest istoty postęp 1 pkt x x x Obliczeie pochodej ukcji : 6 Pokoaie zasadiczych trudości zadaia pkt Wyzaczeie ekstremów lokalych ukcji : dla x 6 osiąga maksimum lokale rówe 0, dla x osiąga miimum lokale rówe pełe pkt Uzasadieie, że rówaie x 1 ma dokładie jedo rozwiązaie 48 7
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o.
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 06/07 MATEMATYKA POZIOM ROZSZERZONY Zasady oceiaia rozwiązań zadań Copyright by Nowa Era Sp z oo Próby egzami maturaly z Nową Erą Uwaga: Akceptowae są wszystkie odpowiedzi
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
Dydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjy (wykłady) Wykład r 12: Fukcja wykładicza cd. Ciągłość fukcji. Pochoda fukcji Semestr zimowy 2018/2019 Fukcja wykładicza (cd.) propozycja Podobie jak w przykładach
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Techikum Nr 2 im. ge. Mieczysława Smorawińskiego w Zespole Szkół Ekoomiczych w Kaliszu Wymagaia edukacyje iezbęde do uzyskaia poszczególych śródroczych i roczych oce klasyfikacyjych z obowiązkowych zajęć
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.
FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x
Materiał ćwiczeniowy z matematyki marzec 2012
Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia
NOWA MATURA 2005 ( ) ( ) Matematyka Arkusz II treści zadań i rozwiązania zadań. 9 maja = + i zapisz ją w
NOWA MATURA 005 Matematyka Arkusz II treści zadań i rozwiązaia zadań 9 maja 005 ZADANIE ( pkt) Wyzacz dziedzię fukcji f ( x) log ( x x x ) postaci sumy przedziałów liczbowych = + i zapisz ją w x ROZWIĄZANIE
Wymagania kl. 2. Zakres podstawowy i rozszerzony. Uczeń:
Wymagaia kl. 2 Zakres podstawowy i rozszerzoy Temat lekcji Zakres treści Osiągięcia uczia 1. WIELOMIANY 1. Stopień i defiicja jedomiau, dwumiau, wielomiau współczyiki pojęcie stopia jedomiau i stopia wielomiau
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013
/7 I. FUNKCJA KWADRATOWA. Fukcja kwadratowa w postaci kaoiczej i ogólej. Napisz wzór fukcji kwadratowej wiedząc, że wierzchołkiem paraboli będącej jej wykresem jest początek układu współrzędych oraz, że
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.
LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów
Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).
Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA OD 05 ( NOWA MATURA ) FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Klucz puktowaia
K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Ozaczeia: *OZNACZONE ZOSTAŁY TEMATY REALIZOWANE NA OZIOMIE ROZSZERZONYM wymagaia koiecze; wymagaia podstawowe; R wymagaia rozszerzające; D wymagaia dopełiające; W wymagaia wykraczające Temat lekcji Zakres
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)
Przedmiotowy system oceiaia wraz z określeiem wymagań edukacyjych (zakres rozszerzoy) Wymagaia koiecze (K) dotyczą zagadień elemetarych, staowiących swego rodzaju podstawę, zatem powiy być opaowae przez
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f
ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x.
Zadaie.. Obliczyć graice x 2 + 2x 3 (a) x x x2 + x2 + 25 5 (d) x 0. Graica i ciągłość fukcji x 2 5x + 6 (b) x x 2 x 6 4x (e) x 0si 2x (g) x 0 cos x x 2 (h) x 8 Zadaie.2. Obliczyć graice (a) (d) (g) x (x3
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18
dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności
Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe:
: R A R, A przedział A, Wykład III Graice ukcji określoa w, S \ Deiicja 3. (deiicja Caucy eo raicy ukcji) : D U,, ( ) : ot Iaczej: Uot D U K M U ot U ot K M Graice iewłaściwe: k K R D M K K R M R D De.
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
EGZAMIN MATURALNY MATEMATYKA
EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzoy ZBIÓR ZADAŃ Materiały pomocicze dla ucziów i auczycieli Cetrala Komisja Egzamiacyja 05 Zadaia 5 Zadaia Liczby rzeczywiste i wyrażeia algebraicze Rówaia i
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Poradnik maturzysty matematyka
Barbara Kaim-Gwier, Zdzisława Hojacka Poradik maturzysty matematyka stara matura Umiejętości wymagae a pisemym egzamiie dojrzałości z matematyki dla wszystkich profili poza matematyczo-fizyczym (zestawy
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań
Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
a n 7 a jest ciągiem arytmetycznym.
ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg
MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty
MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji
Tematy zadań 2 razy 33 przykładowe zadania maturalne. Matura podstawowa
Tematy zadań razy przykładowe zadaia maturale Matura podstawowa Porówaj liczby: 54 + 5 oraz 4 W klasie jest 9 ucziów o średiej wieku 6 lat Średia wieku wzrośie o rok, jeżeli doliczy się wiek wychowawcy
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x
ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f
ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ
ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III informatyka ZAKRES ROZSZERZONY (135 godz.)
Rok szkoly 2019/20 klasa 3iB Joaa Mikułka WYMAGANIA EDUACYJNE Z MATEMATYI LASA III iformatyka ZARES ROZSZERZONY (135 godz.) Ozaczeia: wymagaia koiecze (dopuszczający); wymagaia podstawowe (dostateczy);
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III budownictwo ZAKRES ROZSZERZONY (105 godz.), gdy. podaje granicę ciągu an. gdy k > 0.
YMAGANIA EDUACYJNE Z MATEMATYI LASA III budowictwo ZARES ROZSZERZONY (105 godz.) Ozaczeia: wymagaia koiecze (dopuszczający); P wymagaia podstawowe (dostateczy); R wymagaia rozszerzające (dobry); D wymagaia
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
LICEUM I TECHNIKUM. zakres rozszerzony. Matematyka poznać, zrozumieć. Podręcznik, klasa3
LICEUM I TECHNIKUM zakres rozszerzoy Matematyka pozać, zrozumieć Podręczik, klasa3 Autorzy podręczika: Alia Przychoda, Moika Strawa, Zygmut Łaszczyk Podręczik dopuszczoy do użytku szkolego przez miistra
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c)
RACHUNEK RÓŻNCZKOWY cd Twierdzeie Lagrage a: Jeżeli jest ciągła w [a,b], jest różiczkwala w a,b), t ca,b) : b)-a)= c) b-a) b) Dwód Wystarczy rzpatrzyć ukcję t) t) t a), t[a,b], która b a spełia załżeia
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne
Fukcje trygoometrycze Fukcje trygoometry cze - powtórzeie Tożsamości trygoometry cze 3 podstawowe tożsamości trygoometrycze metoda uzasadiaia tożsamości trygoometryczych Fukcje trygoometry cze sumy i różicy
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N
OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)
Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
Przeczytaj, zanim zaczniesz rozwiązywać
Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5
a jest równa S 2 2 n 1 kn, był rosnący ), gdzie an ... , x4
I Ciągi stroa k Oblicz sumę: k Ciąg a określoy jest w astępujący sposób: a a a wzór a -ty wyraz tego ciągu i wykaż jego prawdziwość idukcyjie Suma początkowych wyrazów ciągu a a * a dla N a jest rówa S
Ekonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
Metody numeryczne Laboratorium 5 Info
Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych