Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
|
|
- Izabela Łukasik
- 6 lat temu
- Przeglądów:
Transkrypt
1 46. Wskazać liczbę rzeczywistą k, dla której graica k )) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę kwadratów w postaci a b = a2 b 2 przekształcay a+b daą w treści zadaia graicę w astępujący sposób: k ) )) = k = k = 333 = k ) = k Miaowik ostatiego wyrażeia pod zakie graicy dąży do 2 przy dążący do ieskończoości, atoiast liczik jest rówy, gdy k = 333. Dla k = 333 ay więc k = = 2. Odpowiedź: Dla k = 333 daa w zadaiu graica a wartość / Wskazać liczbę rzeczywistą k, dla której graica k )) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę czwartych potęg w postaci a b = a2 b 2 a+b = a 4 b 4 a+b) a 2 +b 2 ) przekształcay daą w treści zadaia graicę w astępujący sposób: k )) = k 4 ) ) = = = = k ) ) = k ) + + ) = k ) + + ). Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
2 Miaowik ostatiego wyrażeia pod zakie graicy dąży do 4 przy dążący do ieskończoości, atoiast liczik jest rówy, gdy k = 666. Dla k = 666 ay więc k ) + + ) = ) + + ) = 4. Odpowiedź: Dla k = 666 daa w zadaiu graica a wartość / Obliczyć graicę ciągu) 3 k k + 3 k k k k k k +4 3 ) k k dla tak dobraej wartości rzeczywistej dodatiej paraetru k, aby powyższa graica była dodatia i skończoa. Rozwiązaie: Zauważay, że daa w zadaiu sua a 4 wyrazów. Szacujey ją obustroie: 3 k 4 k +0 3 k k + 3 k k +2 3 k k k 4 k + 4, a astępie kolejo obliczay graice oszacowań dolego i górego przy k 4 k +0 k k 3 k k/3 3 k k/3 9 = = = k, 5 o ile k/3 9 = 0, czyli k = k 4 k k k + = 4 = 3 k 3 k k, 23 o ile k 27 = 0, czyli k = 27. Korzystając z twierdzeia o trzech ciągach wioskujey, że dla k = 27 graica daego w zadaiu wyrażeia jest rówa Obliczyć graicę ciągu) k ) ) 3. k 497 Rozwiązaie: Zauważay, że ostati składik daej w zadaiu suy oża zapisać jako , 497 skąd wyika, że a oa składików. Ozaczyy suę występującą w treści zadaia przez b i oszacujey ją od góry przez wspóle oszacowaie składików licziki od góry, iaowiki od dołu) przeożoe przez liczbę składików. Ozaczyy uzyskae oszacowaie przez c. b ) +) = c. Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
3 Postępując aalogiczie oszacujey daą suę od dołu przez wspóle oszacowaie składików licziki od dołu, iaowiki od góry) przeożoe przez liczbę składików. Ozaczyy uzyskae oszacowaie przez a. b ) = a. Obliczając graice ciągów a ) i c ) otrzyujey: a = ) = ) + 3 = oraz c = ) +) = ) + ) 3 = Poieważ dla dowolej liczby aturalej zachodzą ierówości a poadto oraz a b c, c = 3 7 a = 3 7, a ocy twierdzeia o trzech ciągach otrzyujey b = 3 7. Odpowiedź: Wartość graicy podaej w treści zadaia jest rówa 3/ Obliczyć graicę ciągu) ) ) k 2 +k) ) ) ) ) 3 + Rozwiązaie: Zauważay, że daa w zadaiu sua a +3) = 6+0 wyrazów. Szacujey ją obustroie: 6+0) +3) k=0 2 +k 2 +k) ) +3)2 6 +, a astępie kolejo obliczay graice oszacowań dolego i górego przy +. Otrzyujey 2 6+0) +3) 6 + = 6+ 0 ) + ) Lista 3R rozwiązaia iektórych zadań) Stroy
4 oraz 6+0) +3)2 6 + = 6+ 0 ) ) Korzystając z twierdzeia o trzech ciągach wioskujey, że graica daego w zadaiu wyrażeia jest rówa 6. W każdy z poiższych zadań podaj kresy zbioru oraz określ, czy kresy ależą do zbioru. 23. A = +2 : N if A = 0 NIE) sup A = /3 TAK) B = +2 : N if B = 2 NIE) sup B = 7/3 TAK) C = +2 : N if C = 5/3 TAK) sup C = 2 NIE) D = :, N if D = 0 NIE) sup D = 2 TAK) E = :, N if E = 3 NIE) sup E = 8 NIE) F = :, N if F = 0 NIE) sup F = 6 TAK) 29. G = :, N if G = 5 TAK) 220. H = :, N if H = 3 25 NIE) 22. I = :, N if I = log 3 25 = 2 log 3 5 NIE) 222. J = :, N if J = 2 TAK) 223. A = x 2 : x 3, ) if A = 0 TAK) sup A = 9 NIE) 224. B = x 3 : x 3, ) if B = 27 NIE) sup B = NIE) 225. C = x 4 : x 3, ) if C = 0 TAK) sup C = 8 NIE) sup G = 3 3 = 27 NIE) sup H = 3 TAK) sup I = 3 TAK) sup J = log 5 27 = 3 log 5 3 NIE) 226. D = x 2 2x+ : x, 4) if D = 0 TAK) sup D = 9 NIE) Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
5 227. E = x 2 4x+4 : x, 4) if E = 0 TAK) sup E = 9 NIE) 228. F = x 2 6x+9 : x, 4) if F = 0 TAK) sup F = 6 NIE) 229. G = x 2 2x : x, 4) if G = TAK) sup G = 8 NIE) 230. H = x 2 4x : x, 4) if H = 4 TAK) sup H = 5 NIE) 23. I = x 2 6x : x, 4) if I = 9 TAK) sup I = 7 NIE) 232. A = :, N B = :, N if B = = 3 6 NIE) 234. C = :, N if C = 2 TAK) if A = 4 TAK) sup A = 8 TAK) sup B = 4 TAK) sup C = 2 2 = 8 NIE) 235. D = : N if D = 2 TAK) sup D = /2 NIE) 236. E = : N if E = 4 2 TAK) sup E = /4 NIE) ) 237. F = log 2 x) 2 : x 8, 2 if F = 0 TAK) sup F = 9 NIE) ) 238. G = log 3 x) 3 : x 9, 3 ) 239. H = log 4 x) 4 : x 6, 4 if G = 8 NIE) sup G = NIE) if H = 0 TAK) sup H = 6 NIE) 240. I = log x 8 : x 0, ] if I = 3 TAK) sup I = 0 NIE) J = log x 8 : x [ ) 2, + if J = 0 NIE) sup J = 6 TAK) 242. K = log x 8 : x, 4] if K = 3/2 TAK) sup K = + NIE) [ ) 243. L = log x 8 : x 6, if L = NIE) sup L = 3/4 TAK) 244. A = x 2) 2 : x 0, 3) if A = 0 TAK) sup A = 4 NIE) 245. B = x 2) 3 : x 0, 3) if B = 8 NIE) sup B = NIE) 246. C = x 2) 4 : x 0, 3) if C = 0 TAK) sup C = 6 NIE) Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
6 247. D = x 2) 5 : x 0, 3) if D = 32 NIE) sup D = NIE) 248. E = :, N if E = / 2 = 2/2 NIE) 249. F = :, N if F = 2/3 TAK) 250. G = :, N if G = 5/3 TAK) 25. H = :, N if H = 2/3 TAK) 252. I = :, N if I = log 3 2 = log 9 4 NIE) 253. J = :, N sup E = 2 NIE) sup F = 4/3 TAK) sup G = 3 NIE) sup H = 4/3 TAK) sup I = log 3 4 = log 9 6 NIE) if J = log 3 5 = log 9 25 NIE) sup J = 3/2 TAK) 254. A = 3 0 : N if A = TAK) sup A = /7 TAK) 255. B = 3 20 : N if B = / TAK) sup B = /7 TAK) 256. C = 3 26 : N if C = /7 TAK) sup C = TAK) 257. D = 5 26 : N if D = TAK) sup D = /99 TAK) 258. E = 26 4 ) : N 259. F = 26 5 ) : N 260. G = 26 6 ) : N if E = 26 4 TAK) sup E = + NIE) if F = 0 NIE) sup F = 26 5 TAK) if G = 26 6 TAK) 26. H = 2 x2 : x 2, ) if H = TAK) sup H = 6 NIE) 262. I = 2 x3 : x 2, ) if I = /256 NIE) sup I = 2 NIE) 263. J = 2 x4 : x 2, ) if J = TAK) sup J = 2 6 NIE) sup G = 26 6 ) 2 TAK) Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
7 Niech T będzie zbiore wszystkich ciągów a ) spełiających waruek a < N. W każdy z dziesięciu poiższych zadań podaj odpowiedi kres zbioru supa : a ) T= ifa : a ) T= supa 2 : a ) T=3/ ifa 2 : a ) T=/ supa 2 a 3 : a ) T=5/ ifa 2 a 3 : a ) T= 5/ supa 3 a 6 : a ) T=/2 27. ifa 3 a 6 : a ) T= / supa 2 +a 3 +a 6 : a ) T= ifa 2 +a 3 +a 6 : a ) T=2 Niech T będzie zbiore wszystkich ciągów a ) spełiających waruek a N <. W każdy z dziesięciu poiższych zadań podaj odpowiedi kres zbioru supa : a ) T= ifa : a ) T= supa 2 : a ) T= 277. ifa 2 : a ) T= supa 2 a 3 : a ) T= 279. ifa 2 a 3 : a ) T= 2/ supa 3 a 6 : a ) T=2/3 28. ifa 3 a 6 : a ) T= / supa 2 +a 3 +a 6 : a ) T= ifa 2 +a 3 +a 6 : a ) T=0 Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
8 293. Podać przykład takiego szeregu zbieżego a o wyrazach dodatich, że = a = a 2 = 6. = = Wskazówka: Poszukać szeregu geoetryczego. Rozwiązaie: Spróbujey zaleźć szereg geoetryczy o żądaych własościach. W ty celu załóży, że a = cq, paiętając, aby c > 0 oraz 0 < q <. Wówczas a = cq = c = = q oraz a 2 = c 2 q 2) c 2 = q, 2 = co po uwzględieiu waruków zadaia oraz prowadzi do układu rówań c q = 6 c 2 q = 6, 2 czyli = c = 6 q) c 2 = 6 q 2 ). Dzieląc drugie rówaie przez pierwsze otrzyujey c = +q, co po podstawieiu do pierwszego rówaia daje kolejo skąd +q = 6 6q, 7q = 5, q = 5 7, c = +q = = 2 7. Otrzyae rozwiązaie q = 5/7, c = 2/7 prowadzi do a = cq = Odpowiedź: Przykłade szeregu spełiającego waruki zadaia jest szereg = ) Lista 3R rozwiązaia iektórych zadań) Stroy 0-08
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci
Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17
Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14
Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały
Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.
Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony
Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że
KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ
ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
2. Nieskończone ciągi liczbowe
Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
a n 7 a jest ciągiem arytmetycznym.
ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg
Rozmieszczenie liczb pierwszych
Rozmieszczeie liczb pierwszych Euler Pierwszy owoczesy wyik pochodzi od Eulera: TWIERDZENIE: Szereg p primes p est rozbieży. Szkic dowodu: Dla s > zachodzi rówość ( ) = s = i= ( + p s i ) + p 2s i +....
O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności
Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
Dydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjy (wykłady) Wykład r 12: Fukcja wykładicza cd. Ciągłość fukcji. Pochoda fukcji Semestr zimowy 2018/2019 Fukcja wykładicza (cd.) propozycja Podobie jak w przykładach
Składka ubezpieczeniowa
Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
Funkcja wykładnicza i logarytm
Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a
Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.
Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic
Analiza matematyczna I. Pula jawnych zadań na kolokwia.
Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 25/6 ostatie poprawki: 8 styczia 26 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej jeda trzecia
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Analiza matematyczna I. Pula jawnych zadań na kolokwia.
Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 23/4 ostatie poprawki: 6 listopada 23 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej 2 zadaia
Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-)
Odpowiedzi do zadań z szeregów, cz I. Zauważoe błędy bardzo proszę zgłaszać mailem lub a ćwiczeiach. Z góry dziękuję :-. a +, wsk. skorzystać z rówości a b a b, astępie a+b wyciągąć ajwyższe potęgi z liczika
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań
Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Techikum Nr 2 im. ge. Mieczysława Smorawińskiego w Zespole Szkół Ekoomiczych w Kaliszu Wymagaia edukacyje iezbęde do uzyskaia poszczególych śródroczych i roczych oce klasyfikacyjych z obowiązkowych zajęć
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
Materiał ćwiczeniowy z matematyki marzec 2012
Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadaia Wydaie dwudzieste piąte uzupełioe GiS Oficya Wydawicza GiS Wrocław 07 Maria Gewert Wydział Matematyki Politechika
Analiza I.1, zima wzorcowe rozwiązania
Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw
3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt
Jarosław Wróblewski Matematyka dla Myślących 008/09 3. Wzory skrócoego możeia działaia a wielomiaach. Procety. Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala. 5 paździerika 008 r. 35. Uprościć wyrażeie
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadaia Wydaie dwudzieste szóste zmieioe Oficya Wydawicza GiS Wrocław 08 Maria Gewert Wydział Matematyki Politechika
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
7 Wyzaczyć zbiór wszyskich warości rzeczywisych parameru p, dla kórych całka iewłaściwa jes zbieża x xe Dzieląc przedział całkowaia orzymujemy x x e x x e x x e Zbadamy, dla kórych warości parameru p całki
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n
SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly
Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.
FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x
EGZAMIN MATURALNY MATEMATYKA
EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzoy ZBIÓR ZADAŃ Materiały pomocicze dla ucziów i auczycieli Cetrala Komisja Egzamiacyja 05 Zadaia 5 Zadaia Liczby rzeczywiste i wyrażeia algebraicze Rówaia i
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań
Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika
1 Wersja testu A 21 czerwca 2017 r. 1. Wskazać taką liczbę wymierną w, aby podana liczba była wymierna. w = w 2, w = 2.
1 Wersja testu A 1 czerwca 017 r. 1. Wskazać taką liczbę wymierą w, aby podaa liczba była wymiera. 10 1 ) 10 +w, w = 1 5 1 ) 10 +w, w = ) 10 10 3 +w 3, w = 1 ) 5 10 3 +w 3, w = 4. Zapisać wartość podaej
Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).
Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę
3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.
Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet
Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)
Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.
Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad.
Sprawdzia r 4: 4..04 (poiedziałek, godz. 0:5-0:35 (ateriał zad. -400 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli M R x M. Każdą liczbę rzeczywistą M R spełiającą waruek x M azyway
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Analiza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+
MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,