MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
|
|
- Antoni Filipiak
- 5 lat temu
- Przeglądów:
Transkrypt
1 MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. **************************************************************** S. Drgaia brył Każdy układ mechaiczy (bryła) wprowadzoy do drgań w środowisku sprężystym jest źródłem ali akustyczej. Bryła o ograiczoych wymiarach: akładaie się al biegących i odbitych od graic bryły, itererecja tych al; drgaia rezoasowe poszczególych puktów materiałowych bryły, oddziaływaie tych puktów wzajemie a siebie. Zamocowaie bryły wpływa a ilość liczby swobody układu drgającego. S3-4. Drgaia brył Każda bryła może być traktowaa jako układ puktów materialych połączoych siłami sprężystości. Drgaia -go puktu wpływają a drgaia wszystkich pozostałych. Drgaia brył są wyikiem ałożeia się różych właściwych dla bryły sposobów drgań, które mogą istieć iezależie od siebie. W każdym sposobie drgań wszystkie pukty bryły drgają siusoidalie z tą samą częstotliwością Drgaia włase bryły są wyikiem istieia w bryle al stojących. Częstotliwość drgań puktów bryły oraz rozkład węzłów i strzałek zależą przede wszystkim od kształtu i rozmiarów bryły oraz od waruków istiejących a jej krańcach, ie zależą oe atomiast od sposobu pobudzaia bryły. S5-8. Układ materialy o dwóch stopiach swobody: drgaia włase Żyszkowski Z., Podstawy elektroakustyki, WNT, Warszawa, 984 Talarczyk., Podstawy techiki ultradźwięków, Wrocław, 990 d d M M C C d d M M C C
2 Rówaia ruchu: d 0 d 0 CM CM C M M M M Częstotliwość drgań układu: Powiązaie obydwu puktów materialych wymusza drgaia układu z tą samą częstotliwością. 4 C M C M C M C M C M M 4 4 S9-0. Układ materialy o dwóch stopiach swobody: drgaia wymuszoe Żyszkowski Z., Podstawy elektroakustyki, WNT, Warszawa, 984 Talarczyk., Podstawy techiki ultradźwięków, Wrocław, 990 Rówaia ruchu: d Fe j t A e jt d 4 j t Fe 4 M M Fe jt
3 3. Układ pobudzay F wymuszającą o częst. ω po pewym okresie przejściowym będzie drgać z częstotliwością wymuszającą.. Amplituda wychyleń puktów i (wg wzorów) zależy od pulsacji drgań własych elemetu i od częst. wymuszającej. 3. Jeśli ω = ω + lub ω = ω - miaowik we wzorach = 0 (przy pomiięciu tarcia). S-6. Drgaia podłuże prętów Żyszkowski Z., Podstawy elektroakustyki, WNT, Warszawa, 984 Talarczyk., Podstawy techiki ultradźwięków, Wrocław, 990 Rówaie ali podłużej rozchodzącej się w pręcie: cos Bcos t t c Dla drgań swobodych: - strzałki a końcach pręta ( = 0 i = l), czyli ξ ma - ciśieie (aprężeie) ~ zgęszczeia a końcach pręta = 0, czyli dξ/d = 0 d si 0 d dla 0,,... dla l l c l l c L0,0 d 4 d / 0 to c / o
4 4 S7. Drgaia brył płaskich (membray, płyty) Żyszkowski Z., Podstawy elektroakustyki, WNT, Warszawa, 984 Talarczyk., Podstawy techiki ultradźwięków, Wrocław, Grubość << pozostałe wymiary - Najczęściej stosowae: płyty i membray okrągłe Membraa bryła o pomijalie małej sprężystości własej w stosuku do sprężystości pochodzącej z jej aciągu. Płyta sprężystość własa jest czyikiem decydującym. S8-9. Drgaia membra Żyszkowski Z., Podstawy elektroakustyki, WNT, Warszawa, 984 Talarczyk., Podstawy techiki ultradźwięków, Wrocław, 990 c T m J m r m oraz c T / s r r c m m m o o s
5 5 S0-. Drgaia płyt Żyszkowski Z., Podstawy elektroakustyki, WNT, Warszawa, 984 Talarczyk., Podstawy techiki ultradźwięków, Wrocław, 990 Płyta (sprężystość własa jest czyikiem decydującym): - sprężystość materiału, - współczyik Poissoa, - dwa rodzaje zamocowań to samo rówaie ruchu lecz ie waruki graicze:. Zaciśięcie a obrzeżu płyty. Podparcie a obrzeżu płyty Dla obydwu sposobów to samo rówaie ruchu ale ie waruki graicze hc h m m m 4ro 4ro 3 m J r oraz c m m c 3 h r o Współczyiki γ m róże dla obu sposobów mocowaia i ie są całkowite.. 3. S-4. Drgaia powierzchi przetworika ultradźwiękowego Przetworiki ultradźwiękowe w większości zastosowań: Niewielka okrągła lub prostokąta płytka piezoceramicza o pewej grubości drgaia grubościowe. Grubość: λ/ ala stojąca zagęszczeń i rozrzedzeń zmiay grubości płytki względem powierzchi węzłowej przechodzącej przez środek płytki. c d dla,3,5,... c d
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ
Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.
Bardziej szczegółowoAkustyka. Fale akustyczne = fale dźwiękowe = fale mechaniczne, polegające na drganiach cząstek ośrodka.
Akustyka Fale akustycze ale dźwiękowe ale mechaicze, polegające a drgaiach cząstek ośrodka. Cząstka mała, myślowo wyodrębioa część ośrodka, p. w gazie prostopadłościa o ustaloych wymiarach w pręcie prostopadłościa
Bardziej szczegółowoRysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
Bardziej szczegółowoBADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Istrukcja do ćwiczeia r 3 BADANIE DRGAŃ WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA. Cel ćwiczeia Celem ćwiczeia jest pozaie szeregu zjawisk związaych z drgaiami
Bardziej szczegółowou t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Bardziej szczegółowo= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC
4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc
Bardziej szczegółowoLABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Bardziej szczegółowoVII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Bardziej szczegółowoWprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Bardziej szczegółowoProjekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)
Bardziej szczegółowoLABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Bardziej szczegółowoFALE W OŚRODKACH SPRĘZYSTYCH
ALE W OŚRODKACH SPRĘZYSTYCH PRZYKŁADY RUCHU ALOWEGO Zjawisko rozchodzenia się fal spotykamy powszechnie. Przykładami są fale na wodzie, fale dźwiękowe, poruszający się front przewracających się kostek
Bardziej szczegółowoPodstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Bardziej szczegółowoTemat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.
W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowoMATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
1 MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) 7. Przetworniki stosowane w medycynie: tupu sandwich, kompozytowe,
Bardziej szczegółowoFale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
Bardziej szczegółowoWykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana
Wykład 3: Jak wygląda dźwięk? Katarzyna Weron Matematyka Stosowana Fala dźwiękowa Podłużna fala rozchodząca się w ośrodku Powietrzu Wodzie Ciele stałym (słyszycie czasem sąsiadów?) Prędkość dźwięku: stal
Bardziej szczegółowoFal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Bardziej szczegółowoLABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Bardziej szczegółowoMACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Bardziej szczegółowoOPTYKA GEOMETRYCZNA I INSTRUMENTALNA
00-BO5, rok akademicki 08/9 OPTYKA GOMTRYCZNA I INSTRUMNTALNA dr hab. Raał Kasztelaic Wykład 5 Bieg promiei przez powierzchię Przedmiot w ieskończoości 3 Odległość przedmiot-obraz D = a + b d = D a = b
Bardziej szczegółowoInformatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Bardziej szczegółowoSCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE
Bardziej szczegółowoPOMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ
ELEKTROAKUSTYKA LABORATORIUM ETE8300L ĆWICZENIE NR 4 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ 1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą pomiaru współczynnika pochłaniania
Bardziej szczegółowoWYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE
W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ
Bardziej szczegółowoP π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
Bardziej szczegółowoMATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Bardziej szczegółowoPRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Bardziej szczegółowoBADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
Bardziej szczegółowoPOMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Bardziej szczegółowoMECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Bardziej szczegółowoPodstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Bardziej szczegółowoELEMENTY OPTYKI GEOMETRYCZNEJ
ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza
Bardziej szczegółowoMetody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Bardziej szczegółowoWykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Bardziej szczegółowoEgzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Bardziej szczegółowoXVI OGÓLNOPOLSKIE SPOTKANIE KLUBU DEMONSTRATORÓW FIZYKI WROCŁAW 20.VI 22.VI 2016 WIZUALIZACJA DRGAŃ
XVI OGÓLNOPOLSKIE SPOTKANIE KLUBU DEMONSTRATORÓW FIZYKI WROCŁAW 20.VI 22.VI 2016 WIZUALIZACJA DRGAŃ Jarosław Nowakowski, Andrzej Kuczkowski,, Andrzej Kozłowski oraz Leszek Wicikowski WYDZIAŁ FIZYKI TECHNICZNEJ
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Bardziej szczegółowoRUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Bardziej szczegółowoStatystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Bardziej szczegółowoMECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Bardziej szczegółowoPodpis prowadzącego SPRAWOZDANIE
Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek
Bardziej szczegółowoLaboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
Bardziej szczegółowoProwadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.
Bardziej szczegółowoLaboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
Bardziej szczegółowoobszary o większej wartości zaburzenia mają ciemny odcień, a
Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których
Bardziej szczegółowoSzkic do wykładów z mechaniki analitycznej
Szkic do wykładów z mechaiki aalityczej prof. dr hab. Bogda Maruszewski pokój 408 BM e-mail: bogda.maruszewski@put.poza.pl www: http://tm.am.put.poza.pl kosultacje: poiedziałek 11 00 12 00 Politechika
Bardziej szczegółowoFunkcje falowe równanie Schroedingera
Fukcje falowe rówaie Schroedigera Fukcja falowa kwatowa iterpretacja jedo wmiarowe pułapki elektroów fukcje falowe ieskończoa i skończoa studia potecjału atom wodoru rówaie Schroedigera wprowadzeie i rozwiązaia
Bardziej szczegółowoBadanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875
Bardziej szczegółowoWYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY
ĆWICZENIE 103 WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY Cel ćwiczenia: Wyznaczenie gęstości materiału, z którego jest wykonana badana struna. Zagadnienia: definicja fali, parametry opisujące falę (położenie
Bardziej szczegółowoMATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Bardziej szczegółowoĘ Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
Bardziej szczegółowoÓ Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Bardziej szczegółowoDYNAMIKA UKŁADU PUNKTÓW MATERIALNYCH
WYKŁAD 3 DYNAMIKA UKŁADU PUNKTÓW MATERIALNYCH UKŁAD PUNKTÓW MATERIALNYCH zbiór skończoej liczby puktów materialych o zadaej kofiguracji przestrzeej. Obłok Oorta Pas Kupiera Pluto Neptu Ura Satur Jowisz
Bardziej szczegółowoAkustyka muzyczna. Wykład 8 Instrumenty dęte. dr inż. Przemysław Plaskota
Akustyka muzyczna Wykład 8 Instrumenty dęte. dr inż. Przemysław Plaskota Drgania słupa powietrza Słup powietrza pewna ilość powietrza ograniczona podłużnym korpusem, zdolna do wykonywania drgań podłużnych
Bardziej szczegółowoCIPREMONT. Izolacja drgań i dźwięków materiałowych w konstrukcjach budowlanych oraz konstrukcjach wsporczych maszyn dla naprężeń do 4 N/mm 2
CIPREMONT Izolacja drgań i dźwięków materiałowych w konstrukcjach budowlanych oraz konstrukcjach wsporczych maszyn dla naprężeń do 4 N/mm 2 Częstotliwość drgań własnych (rezonansowa) Spis treści Strona
Bardziej szczegółowoW wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Bardziej szczegółowoLABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym
Bardziej szczegółowoStruktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Bardziej szczegółowoZastosowanie czujników piezoelektrycznych do monitorowania procesów drganiowych w konstrukcjach prętowych
SEMINARIUM MONIT 18 LISTOPADA 010 Zastosowaie czujików piezoelektryczych do moitorowaia procesów drgaiowych w kostrukcjach prętowych Adrzej TYLIKOWSKI, Marek PIETRZAKOWSKI, Ja FREUNDLICH Politechika Warszawska
Bardziej szczegółowoL a b o r a t o r i u m (hala 20 ZOS)
Politechika Pozańska Istytut Techologii Mechaiczej Zakład Obróbki Skrawaiem : Studium: iestacjoare I st. : Kieruek: MiBM Specjalość: IME Rok akad.: 05/6 Liczba godzi - Zaawasowae Procesy Wytwarzaia L a
Bardziej szczegółowoDamian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Bardziej szczegółowoWykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja
Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i
Bardziej szczegółowoAnaliza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych
a prawach rękopisu Istytut Iżyierii Lądowej Politechiki Wrocławskiej Aaliza drgań wybraych dźwigarów powierzchiowych metodą elemetów brzegowych Raport serii PRE r 5/ Praca doktorska autor mgr iż. Jacek
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoRelacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Bardziej szczegółowoKrzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych
Bardziej szczegółowoWyznaczanie prędkości rozchodzenia się dźwięku w powietrzu i w ciele stałym
Wyznaczanie prędkości rozchodzenia się dźwięku w powietrzu i w ciele stałym Obowiązkowa znajomość zagadnień: ĆWICZENIE 8 Podstawowe wiadomości o ruchu falowym: prędkość, amplituda, okres i częstość; ruch
Bardziej szczegółowoRozdział 5: Drgania liniowych układów ciągłych
WYKŁAD 9 Rozdział 5: Drgaia iiowych układów ciągłych zęść 1: Drgaia swobode stru, prętów i wałów 5.1. Wiadomości wstępe o ciągłych układach drgających W dotychczasowych rozważaiach rozpatrywaiśmy układy
Bardziej szczegółowoPrzenośnik wibracyjny. Przenośnik wibracyjny. Dr inż. Piotr Kulinowski. tel. (617) B-2 parter p.6
Przenośnik wibracyjny Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik wibracyjny Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (617) 30 74 B- parter p.6 konsultacje: poniedziałek
Bardziej szczegółowoLIGA klasa 2 - styczeń 2017
LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od
Bardziej szczegółowoĆw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
0 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 0. Pomiary współczyika załamaia światła z pomiarów kąta załamaia oraz kąta graiczego Wprowadzeie Światło widziale jest promieiowaiem elektromagetyczym o
Bardziej szczegółowoPodstawy fizyki sezon 1 VIII. Ruch falowy
Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym
Bardziej szczegółowoPRZYKŁADY RUCHU HARMONICZNEGO. = kx
RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest
Bardziej szczegółowoWykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Bardziej szczegółowoDrgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Bardziej szczegółowoKarta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)
Materiał: Zamknięty komórkowy poliuretan Kolor: Fioletowy Sylodyn typoszereg Standardowe wymiary dostawy Grubość:, mm, oznaczenie: Sylodyn NF mm, oznaczenie: Sylodyn NF Rolka:, m szer. m długość Pasy:
Bardziej szczegółowoDrgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Bardziej szczegółowoKarta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)
Materiał: Zamknięty komórkowy poliuretan Kolor: Nieieski Sylodyn typoszereg Standardowe wymiary dostawy Grubość:, mm, oznaczenie: Sylodyn NE mm, oznaczenie: Sylodyn NE Rolka:, m. szer. m długość Pasy:
Bardziej szczegółowo[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Bardziej szczegółowoDrania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.
Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład
Bardziej szczegółowoKolejnośd obliczeo 1. uwzględnienie imperfekcji geometrycznych;
Kolejnośd obliczeo Niezbędne dane: - koncepcja układu konstrukcyjnego z wymiarami przekrojów i układem usztywnieo całej bryły budynki; - dane materiałowe klasa betonu klasa stali; - wykonane obliczenia
Bardziej szczegółowo1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka
1 Drgania i fale 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Drgania i fale Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Bardziej szczegółowoKonkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy
UWAGA: W zadaniach o numerach od 1 do 7 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas testów
Bardziej szczegółowo5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
Bardziej szczegółowoCZASOPISMO T MIESIĘCZNIK POŚWIĘCONY ZAGADNIENIOM TECHNIKI I ARCHITEKTURY MIEJSKA KOLEJ ELEKTRYCZ W KRAKOWIE
CZASOPISMO T MIESIĘCZNIK POŚWIĘCONY ZAGADNIENIOM TECHNIKI I ARCHITEKTURY Kraków Wrzesień Paździerik 1947 Nr. 8 10 70-LECIE KRAKOWSKIEGO TOW. TECHNICZNEGO 60-LECIE CZASOPISMA TECHNICZNEGO" MIEJSKA KOLEJ
Bardziej szczegółowoWykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Bardziej szczegółowoKrystalografia Wykład IX
Krystalograia Wykład IX Pla wykładu NatęŜ ęŝeie retgeowskich releksów dyrakcyjych Atomowy czyik rozpraszaia Źródłem spójego promieiowaia rozproszoego sąs elektroy w atomach. Zatem liczba elektroów w w
Bardziej szczegółowoKATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratoriu Mechaiki Techiczej Ćwiczeie 5 Badaie drgań liiowych o jedy stopiu swobody Cel ćwiczeia Cele ćwiczeia jest pozaie podstawowych pojęć związaych
Bardziej szczegółowoRuch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Bardziej szczegółowoDRGANIA ELEMENTÓW KONSTRUKCJI
DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania
Bardziej szczegółowoArkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Bardziej szczegółowoTechnika ultradźwiękowa w diagnostyce medycznej
echika ultradźwiękowa w diagostyce medyczej Autorzy: prof. zw. dr hab. iż. Krzysztof Kałużyński dr iż. Jakub Żmigrodzki dr iż. Szymo Cyga Cel Przyswojeie podstaw techiki ultradźwiękowej stosowaej w diagostyce
Bardziej szczegółowo