Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Podobne dokumenty
W siła działająca na bryłę zredukowana do środka masy ( = 0

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

ψ przedstawia zależność

DYNAMIKA KONSTRUKCJI

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Zasady dynamiki Isaak Newton (1686 r.)

Wyznaczyć prędkości punktów A i B

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Opis ruchu obrotowego

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

MECHANIKA OGÓLNA (II)

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika układu punktów materialnych

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

PF11- Dynamika bryły sztywnej.

Fizyka 1 (mechanika) AF14. Wykład 9

Pojęcia podstawowe 1

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

II.1. Zagadnienia wstępne.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

I. DYNAMIKA PUNKTU MATERIALNEGO

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Podstawy fizyki wykład 4

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

Metody Lagrange a i Hamiltona w Mechanice

będzie momentem Twierdzenie Steinera

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

Podstawy fizyki wykład 4

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

VII. ZAGADNIENIA DYNAMIKI

ver b drgania harmoniczne

VII.1 Pojęcia podstawowe.

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

WYMAGANIA EDUKACYJNE

Przemieszczeniem ciała nazywamy zmianę jego położenia

MiBM sem. III Zakres materiału wykładu z fizyki

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

Pobieranie próby. Rozkład χ 2

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

drgania h armoniczne harmoniczne

Dynamika Newtonowska trzy zasady dynamiki

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

Prawa ruchu: dynamika

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ

Fizyka 11. Janusz Andrzejewski

Kinematyka płynów - zadania

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

( ) ( ) ( τ) ( t) = 0

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Zasada zachowania pędu i krętu 5

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

Wykład 4 Metoda Klasyczna część III

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

Elementy dynamiki mechanizmów

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy elektrotechniki

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

Silniki cieplne i rekurencje

Transkrypt:

Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając całą masę ciała w jego środku masy, korzysając z zależności p = v dm = v dm = mv ( m) ( m). Zasada pędu i popędu ciała ma posać jak dla punku maerialnego (cała masa skupiona jes w środku masy), przy czym popęd obliczamy dla siły zredukowanej do środka masy ciała.

Krę ciała w ruchu posępowym, względem nieruchomego punku jes równy K = r mv, gdzie: r wekor promień o począku w punkcie i końcu w środku masy ciała, v prędkość ciała (jednakowa dla wszyskich punków ciała), m masa ciała. mv K r Krę bryły w ruchu posępowym Zasada kręu, kręu i pokręu oraz zasada zachowania kręu. Dla ruchu posępowego bryły słuszne są zasady kręu, kręu i pokręu oraz zasada zachowania kręu, kóre możemy sformułować w posaci nasępujących wierdzeń. Twierdzenie Pochodna względem czasu kręu ciała, względem punku, jes równa momenowi sił zewnęrznych działających na o ciało względem ego samego punku K & = M.

Równanie o możemy eż przedsawić w posaci K K = M d. (4.69) Twierdzenie Pokrę sił zewnęrznych względem punku działających na ciało jes równy przyrosowi kręu ego ciała Twierdzenie 3 Jeżeli momen sił zewnęrznych działających na ciało względem punku jes równy zero, o krę ego ciała względem punku nie może ulec zmianie K = cons. (4.70)

Zasada energii i pracy. Energię kineyczną bryły w ruchu posępowym możemy obliczyć, określając najpierw energię kineyczną masy elemenarnej a) dm v b) or W dr Bryła w ruchu posępowym: a) określanie energii kineycznej, b) określanie pracy sił przyłożonych do bryły de = dmv, kóra po scałkowaniu E = de, ( m) daje energię kineyczną bryły w ruchu posępowym mv E =, gdzie: m masa ciała, v prędkość punku ciała (jednakowa dla wszyskich punków). Pracę sił przyłożonych do ciała poruszającego się ruchem posępowym możemy obliczyć określając najpierw pracę elemenarną skąd dl = W dr, r r L = dl.

Twierdzenie Przyros energii kineycznej przy przemieszczaniu ciała z jednego położenia w drugie jes równy pracy wszyskich sił zewnęrznych działających na o ciało E = E E = L,, gdzie: E energia kineyczna ciała w położeniu począkowym, E energia kineyczna ciała w położeniu końcowym, L, praca sił zewnęrznych, wykonana na drodze od położenia począkowego do końcowego ciała. Różniczkową posać zasady energii orzymamy przez zróżniczkowanie powyższego względem czasu E & = N, gdzie: E energia kineyczna bryły, N dl d = moc. Twierdzenie Moc wszyskich sił zewnęrznych działających na ciało jes równa pochodnej energii kineycznej względem czasu.

Jeżeli pracę wykonują ylko siły poencjalne (np. siły ciężkości, siły w sprężynach), o zasadę energii i pracy możemy podać w posaci zasady zachowania energii poencjalnej E + V = cons. Twierdzenie Suma energii kineycznej i poencjalnej sił zewnęrznych ciała w ruchu posępowym jes wielkością sałą.

Ruch obroowy bryły z M z n ρ a n dm a da n ω da ε Dynamika ruchu obroowego bryły Zasada d Alembera. Sosowana jes w przypadkach, gdy chcemy określić: a) reakcje dynamiczne łożysk, b) położenie elemenów wirujących, c) siły wewnęrzne w elemenach wirujących.

Zasada kręu i pokręu. Równanie ruchu obroowego przekszałcamy do posaci d ( J zω ) = M z, d a po scałkowaniu J ω z d( J zω ) = M zd, J ω z orzymujemy J ω J ω M d =, z z z gdzie: J zω krę bryły, M zd pokrę. Twierdzenie Przyros kręu ciała maerialnego w przedziale czasu <, > równa się impulsowi momenu sił (pokręowi) działających na o ciało w ym okresie czasu.

Zasada energii i pracy. Przekszałcając z kolei równanie ruchu obroowego nasępująco J z d d ω = M z dϕ, co możemy dalej zapisać przyjmuje posać dϕ J z d ω = J z ω d ω = M zd ϕ d, po scałkowaniu ω ϕ J zωdω = M zdϕ, ω ϕ E E = L,, gdzie: E J z ω = energia kineyczna bryły w ruchu obroowym, bryłę będące w ruchu obroowym na drodze od ϕ do ϕ. L ϕ = M dϕ praca par sił (momenów) działających na, z ϕ Różniczkowa posać zasady energii. Po zróżniczkowaniu względem czasu powyższego równania orzymujemy E & = N, gdzie: & = J zωε pochodna energii kineycznej względem czasu, N z E = M ω moc momenu działającego na bryłę.

Ruch płaski bryły ε ω y M a α W y x x Dynamika ruchu płaskiego bryły Zasada d Alembera. Analizę dynamiki ruchu płaskiego można sprowadzić do zagadnienia sayki, jeżeli do ciała przyłożymy zarówno siłę jak i momen d Alembera. Siła a, podobnie jak dla punku maerialnego, przyłożona w środku masy jes równa A = ma, naomias momen M A = J ε. Zgodnie z zasadą d Alembera powyższe równania ruchu płaskiego możemy zapisać: W M + A = 0, + M = 0. A

Zasada energii i pracy. Energia kineyczna ciała w ruchu płaskim jes sumą energii ruchu posępowego środka masy i ruchu obroowego bryły względem osi przechodzącej przez środek masy v E = m + J ω. Z kolei praca wykonana przez siły i momeny przyłożone do ciała, zredukowane do jego środka masy, jes sumą, s ϕ ϕ, s ϕ L = W ds + M d gdzie: s, s droga przebya przez środek masy ciała, ϕ, ϕ ką obrou ciała. Twierdzenie Zmiana energii kineycznej ciała może być dokonana ylko koszem dosarczonej pracy. Twierdzenie o, sanowiące zasadę energii i pracy, zapisujmy E E = L,.

Zasada kręu i pokręu. Krę ciała będącego w ruchu płaskim względem dowolnego, nieruchomego punku, jes równy gdzie: K = K + r mv, K krę ciała względem środka masy, v prędkość środka masy ciała, m masa. r wekor a począku w punkcie i końcu w środku masy ciała, v r K Krę bryły w ruchu płaskim Pochodna względem czasu wekora kręu ciała jes równa sumie momenów sił zewnęrznych działających na o ciało n K & = M = M. i i= Twierdzenie Suma pokręów sił zewnęrznych względem punku jes równa przyrosowi kręu ciała. Twierdzenie o, sanowiące zasadę kręu i pokręu, zapisujemy =. K K M d

bliczanie reakcji dynamicznych łożysk Do obliczania reakcji dynamicznych łożysk w ruchu obroowym bryły sosujemy zasadę d Alembera: l B x z x da ρ α da n B y A x ω ε z y α x dm A y y kreślanie reakcji dynamicznych łożysk bryły ruchu obroowym W przypadku obliczania reakcji dynamicznych łożysk (rys. 4.7) warunki równowagi bryły są nasępujące: A x + B x + da n sinα + da cosα = 0, B y l + zda n cosα zda sinα = 0, A y + B y + da n cosα da sinα = 0, B x l + zda n sinα + zda cosα = 0, gdzie: dan = dmρω, da = dm ερ, a ponado: ρ sinα = x, ρ cosα = y. (4.79)

Po podsawieniu (4.79) do (4.78) orzymujemy: Ax + Bx + ω xdm + ε ydm = 0, Ay + By + ω ydm ε xdm = 0, + ω ε = 0 Byl yzdm xzdm, (4.80) Bxl + ω xzdm + ε yzdm = 0, a po skorzysaniu z zależności: xdm = x m, ( ) m ydm = y m, ( m) xzdm = D xz, (4.8) ( m) yzdm = D yz, ( m) orzymujemy: x x ω ε y y ω ε A + B = x m y m, A + B = y m + x m, y ω yz ε xz B l = D + D. (4.8) x ω xz ε yz B l = D D,

Z powyższych równań wynika, że reakcje dynamiczne w łożyskach będą równe zero, gdy spełnione będą dwa warunki: ) środek masy leży na osi obrou bryły (x = y = 0) ) oś obrou jes jedną z głównych osi bezwładności obracającej się bryły (D xz = D yz = 0). Wirnik, w kórym spełnione są e warunki nazywamy wyrównoważonym.