MECHANIKA 2. Prowadzący: dr Krzysztof Polko
|
|
- Kornelia Stefańska
- 6 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA 2 Prowadzący: dr Krzysztof Polko
2 PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły 6. Podstawy dynamiki 7. Dynamiczne równania ruchu 8. Drgania punktu materialnego 9. Dynamika układu punktów materialnych 10.Momenty bezwładności 11.Praca, moc, sprawność, zasady zachowania 12. Zasady pracy i energii 13.Dynamika ruchu płaskiego ciała sztywnego 14.Teoria uderzenia
3 LITERATURA 1. SIUTA WŁADYSŁAW, Mechanika Techniczna, Wydawnictwa Szkolne i Pedagogiczne, Warszawa ZAWADZKI JERZY, SIUTA WŁADYSŁAW, Mechanika Ogólna, PWN 1970, Warszawa MISIAK JAN, Mechanika Ogólna, WNT, Warszawa HUBER M. T. Mechanika Ogólna i Techniczna. PAN Warszawa 1956.
4 Wykład 1 Podstawy kinematyki
5 WPROWADZENIE KINEMATYKA (kineo z greckiego poruszam) jest to dział mechaniki opisujący ruch punktu lub bryły, bez uwzględniania masy i przyczyn wywołujących zmianę ruchu (geometria ruchu). RUCH określamy jako zmianę położenia ciała materialnego względem układu odniesienia (tj. względem innego ciała lub zbioru ciał uważanych za pozostające w spoczynku) w jednostce czasu.
6 WPROWADZENIE W związku z tym że ciała rzeczywiste zastępujemy pojęciem punkt materialny lub ciało doskonale sztywne, kinematykę możemy podzielić na: Kinematykę punktu materialnego Kinematykę ciała sztywnego.
7 Tor punktu Jest to linia ciągła l utworzona przez kolejne położenia poruszającego się punktu. Tor punktu może być linią prostą lub dowolną krzywą. y Tor krzywoliniowy l l x Rys. 1
8 Droga, odległość W mechanice przez drogę rozumiemy odcinek toru. Odległość długość odcinka łączącego dwa punkty.
9 Podział ruchu Ruch prostoliniowy jednostajny Ruch prostoliniowy zmienny Ruch krzywoliniowy jednostajny Ruch krzywoliniowy zmienny
10 OPIS PORUSZAJĄCEGO SIĘ PUNKTU Położenie poruszającego się punktu P w przyjętym układzie współrzędnych można określić przez x, y, z. Ponieważ współrzędne te są funkcjami zmiennej t (czasu), to otrzymujemy: Kinematyczne równania ruchu punktu x = f 1 (t), y = f 2 (t), z = f 3 (t). Rys. 2
11 Równania ruchu w postaci wektorowej Rys. 3 ρ r = ρ r(t) Jeżeli początek promienia r pokrywa się z początkiem układu współrzędnych to składowe wektora są równe współrzędnym punktu P r x = x(t), r y = y(t), r z = z(t) Po uwzględnieniu powyższej zależności promień wektora r możemy zapisać w postaci sumy geometrycznej:
12 Prędkość punktu materialnego Rozpatrzmy ruch punktu P w przedziale czasu t = t 2 - t 1, w którym punkt przebył drogę s = P 1 P 2. Przyrost wektora promienia wynosi r zatem Rys. 4
13 Prędkość średnia v ρ = Prędkośćśrednia punktu jest ilorazem przyrostu wektora r do czasu t w którym ten przyrost nastąpił.
14 Prędkość chwilowa v ρ = Prędkość chwilową określa granica przy t dążącym do zera Przyrost r ma składowe x, y, z stąd
15 Prędkość chwilowa Wektor prędkości można zapisać w postaci: ρ ρ ρ ρ v = x & i + y& j + z& k którego moduł wynosi: v = & 2 + y& 2 + x 2 z&
16 Przyspieszenie punktu materialnego W czasie t = t 2 - t 1, wektor prędkości zmienia się z v 1 na v 2. Przyrost wektora prędkości wynosi v, zatem Przyspieszenie średnie punktu Przyspieszenie średnie punktu wyraża się jako iloraz przyrostu prędkości v przez przyrost czasu t.
17 Przyspieszenie chwilowe punktu a ρ = Wiedząc, że przyrost prędkości v ma składowe v x, v y, v z, stąd składowe wektora przyśpieszenia mają postać
18 Przyspieszenie chwilowe punktu Wektor przyśpieszenia można zapisać w postaci : a jego moduł
19 Ruch prostoliniowy jednostajny Ruchem prostoliniowym jednostajnym jest ruch punktu po torze prostoliniowym, który odbywa się w taki sposób, że w jednakowych przedziałach czasu t punkt przebywa takie same odcinki drogi.
20 Równania ruchu prostoliniowego jednostajnego Droga s jest liniową funkcją czasu, zatem czyli Stąd po scałkowaniu otrzymujemy
21 Wykres ruchu prostoliniowego jednostajnego Rys. 6 czyli
22 Ruch prostoliniowy zmienny Jest to ruch punktu po torze prostoliniowym, który odbywa się w taki sposób, że w jednakowych przedziałach czasu t punkt przebywa różne odcinki drogi. Ruch prostoliniowy jednostajnie zmienny Jeżeli prędkość jest liniową funkcją czasu, to ruch punktu jest jednostajnie zmienny.
23 Równania ruchu prostoliniowego jednostajnie zmiennego Przyśpieszenie Prędkość Droga a > 0 ruch jednostajnie przyspieszony a < 0 ruch jednostajnie opóźniony
24 Ruch krzywoliniowy jednostajny Jest ruch punktu po torze krzywoliniowym l, w którym wektor prędkości w każdej chwili jest styczny do toru, a jego wartość nie zmienia się z czasem (zmienia się tylko jego kierunek).
25 Ruch krzywoliniowy zmienny Jest to ruch punktu po torze krzywoliniowym, w którym wektor prędkości ruchomego punktu zmienia wartość i kierunek. W ruchu krzywoliniowym zmiennym wektor przyspieszenia punktu tworzy z wektorem prędkości tego punktu pewien kąt α (ostry lub rozwarty).
26 Przyśpieszenie normalne Z rysunku wynika,że wartość przyspieszenia składowego a n prostopadłego do prędkości ma postać: Składowa ta nosi nazwę przyspieszenia normalnego, a związana jest ze zmianą kierunku wektora prędkości.
27 Przyśpieszenie styczne Składowa przyspieszenia w kierunku wektora prędkości nazywana jest przyspieszeniem stycznym i związana jest ze zmianą wartości wektora prędkości. Wartość a t jest określona w postaci:
28 Wektor przyśpieszenia jest sumą przyspieszenia normalnego i stycznego a wartość tego wektora obliczamy z zależności
29 Na podstawie tych wiadomości można ustalić z jakim ruchem punktu materialnego mamy do czynienia: a n 0, a t 0 - Przyspieszenie całkowite jest nachylone pod pewnym kątem (ostrym lub rozwartym) do prędkości. Rozważany ruch jest ruchem krzywoliniowym zmiennym, zmienia się wartość i kierunek prędkości. a n =0, a t 0 - Całkowite przyspieszenie jest styczne do toru. Prędkość w takim ruchu może zmienić swoją wartość ale jej kierunek pozostaje bez zmian. Jest to ruch prostoliniowy zmienny.
30 a n 0, a t =0 - Całkowite przyspieszenie ma kierunek prostopadły do toru. Prędkość w tym ruchu może zmieniać jedynie swój kierunek, a wartość pozostaje stała. Rozważany ruch będzie ruchem jednostajnym krzywoliniowym. a n =0, a t =0 - Całkowite przyspieszenie jest równe zeru. Wektor prędkości w takim ruchu nie może zmienić ani swojego kierunku ani wartości. Jest to więc ruch jednostajnie prostoliniowy.
31 Ruch jednostajny po okręgu W ruchu jednostajnym punkt materialny porusza się ruchem jednostajnym po okręgu o promieniu r, przebywając w równych odstępach czasu t równe odcinki drogi (łuki P 1 P 2, P 2 P 3, P 3 P 4,). P 1 v a n P 1 P 2 2 r r α v Prędkość średnia punktu wyraża się jako Rys. 13 v P 4 P 3 v P 4 P 3 Jednak w tym przypadku droga jest łukiem, więc jak wiadomo z geometrii czyli
32 Prędkość kątowa Stosunek kąta α wyrażonego w radianach do czasu t, w którym ten kąt został zatoczony, nazywamy prędkością kątową. Tak więc wartość prędkości liniowej otrzymamy z wyrażenia
33 Prędkość obrotowa Prędkością obrotową punktu po okręgu nazywamy liczbę pełnych obiegów w ciągu jednej minuty Pomiędzy prędkością kątową [rad/s] i prędkością obrotową [obr/min] zachodzi zależność
34 Ruch zmienny po okręgu przyśpieszenie kątowe Przyśpieszenie kątowe (składowa styczna a t oznaczana przez ε ) określa zmianę wektora prędkości kątowej. W przypadku ruchu jednostajnego po okręgu składowa styczna przyśpieszenia kątowego jest równa zeru. Występuje tylko składowa normalna, której wartość określona jest wzorem:
35 Przykład 1. Tarcza o średnicy d=2r=20cm zaczyna obracać się ruchem jednostajnie przyspieszonym z przyspieszeniem kątowym ε=5 rad/s 2. Obliczyć przyspieszenie styczne i normalne punktów leżących na obwodzie tarczy w dziesiątej sekundzie ruchu. Rozwiązanie: a n ω a t a r v Dane: ε=5 rad/s 2 ; r=0,1m Obliczyć : a t i a n po 10 sek. ruchu Prędkość kątowa po 10 s ruchu wynosi: Przyśpieszenie normalne i styczne
36 Przykład 2. Ruch punktu po płaszczyźnie określony jest równaniami: x=40t, y=5t 2. Obliczyć wartości przyspieszenia stycznego i normalnego w chwili t=3s. Rozwiązanie: Składowe prędkości: Składowe przyśpieszenia Moduł wektora prędkości wynosi: dla t=3s Moduł wektora przyśpieszenia:
37 Pierwsza pochodna prędkości określa przyspieszenie styczne dla t=3s Przyspieszenie normalne obliczamy z zależności dla t=3s
38 Przykład 3 Narysować wykres s(t), v(t) oraz a(t) ilustrujący ruch ciała rzuconego pionowo w górę z prędkością początkową v 0. Dane: v 0, h 0. v 0 h 0
39 Rozwiązanie Wychodzimy z podstawowego równania: przez cały czas trwania ruchu. Ruch jednostajnie opóźniony. y x v 0
40 Rozwiązanie a(t) 0 g t w 2t w t v(t) v 0 0 t w 2t w t v 0
41 Rozwiązanie s(t) h max h 0 t w 2t w t
42 Rozwiązanie Obliczymy ponadto czas wznoszenia: Wyjdziemy z równania: v 0 y x
43 Rozwiązanie Wysokość rzutu obliczymy z zależności: Zatem: h max v 0 y x
44 Przykład 4 Ruch ciała po gładkiej równi pochyłej, a następnie po gładkim torze poziomym. a(t) = g a(t) = 0 s(t) parabola prosta gładkie przejście (funkcja różniczkowalna)!!! t
45 Jak odczytywać z wykresu? 1. Ruch jednostajny prostoliniowy: v(t) v 0 > 0 v(t) 0 t 0 t 0 t 0 t v 0 < 0 prędkość dodatnia punkt oddala się od obserwatora. prędkość ujemna punkt zbliża się do obserwatora.
46 Jak odczytywać z wykresu? 1. Ruch jednostajny prostoliniowy: s(t) s(t) tgα > 0 tgα < 0 0 α t 0 t 0 t 0 α t funkcja drogi rosnąca punkt oddala się od obserwatora. funkcja drogi malejąca punkt zbliża się do obserwatora.
47 Jak odczytywać z wykresu? 1. Ruch jednostajny prostoliniowy: s(t) s(t) s(t) > 0 0 t 0 t 0 α t 0 t s(t) < 0 wartości funkcji drogi dodatnie punkt porusza się po jednej stronie obserwatora. wartości funkcji drogi ujemne punkt porusza się po przeciwnej stronie obserwatora.
48 Jak odczytywać z wykresu? 2. Ruch jednostajnie przyspieszony (opóźniony): v(t) tg α > 0 v(t) tg α < 0 0 α t 0 t 0 t 0 α t funkcja prędkości rosnąca punkt przyspiesza. funkcja prędkości malejąca punkt zwalnia.
49 Jak odczytywać z wykresu? 2. Ruch jednostajnie przyspieszony (opóźniony): v(t) v(t) > 0 v(t) 0 t 0 t 0 t 0 t v(t) < 0 wartość prędkości dodatnia punkt oddala się od obserwatora. wartość prędkości ujemna punkt zbliża się od obserwatora.
50 Jak odczytywać z wykresu? 2. Ruch jednostajnie przyspieszony (opóźniony): Reguły są analogiczne jak dla ruchu jednostajnego prostoliniowego. Dodatkowo: α 1 α 2 α 2 α 1 parabola wypukła punkt przyspiesza. parabola wklęsła punkt zwalnia.
51 Przykład 5 Mając dany wykres prędkości od czasu, narysować wykres a(t) oraz s(t). Wyznaczyć: wartość przyspieszenia w każdym z przedziałów; przebytą drogę na końcu każdego przedziału. Dane dodatkowe: s(0) = v 1 t 1 /2.
52 Rozwiązanie Obliczymy najpierw wartość przyspieszenia i przebytej drogi w każdym z przedziałów: 0 < t < t 1 Prędkość ujemna, zatem punkt zbliża się do obserwatora. α 1
53 Rozwiązanie Obliczymy najpierw wartość przyspieszenia i przebytej drogi w każdym z przedziałów: t 1 < t < 2t 1 α 1 α 2
54 Rozwiązanie Wartość położenia na końcu każdego z przedziałów: Dla t 1 : Dla 2t 1 : prędkość malejąca parabola wklęsła prędkość rosnąca parabola wypukła α 1 α 2
55 Rozwiązanie Wykres drogi od czasu: s(t) v 1 t 1 2 s 1 (t) 0 t 1 s 2 (t) 2t 1 t v 1 t 1 2
56 Rozwiązanie Wykres przyspieszenia od czasu: a(t) v 1 t 1 0 t 1 2t 1 t v 1 t 1
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia
Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku
Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:
Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej
Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.
Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.
Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa
KINEMATYKA czyli opis ruchu. Marian Talar
KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski
Ruch prostoliniowy zmienny dr inż. Romuald Kędzierski Przypomnienie Szybkość średnia Wielkość skalarna definiowana, jako iloraz przebytej drogi i czasu, w którym ta droga została przebyta. Uwaga: Szybkość
Kinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Ruch jednostajny prostoliniowy
Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym
WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA
WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
KINEMATYKA. Kinematyka zajmuje się RUCHEM, ale nie bierze się pod uwagę przyczyn wywołujących ten ruch ani własności poruszających się ciał.
1 KINEMATYKA 1. WSTĘP. Wyraz kinematyka pochodzi od greckiego kineo poruszam. Kinematyka zajmuje się RUCHEM, ale nie bierze się pod uwagę przyczyn wywołujących ten ruch ani własności poruszających się
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Rodzaje zadań w nauczaniu fizyki
Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.
1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby
Zasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum
Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie
Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź
Treści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Przykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski.
PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/
Ćwiczenie: "Kinematyka"
Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Ćwiczenie: "Ruch po okręgu"
Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t
Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Wymagania edukacyjne z fizyki poziom rozszerzony część 1
1 Wymagania edukacyjne z fizyki poziom rozszerzony część 1 Kinematyka podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
Rozdział 2. Kinematyka
Rozdział. Kinematyka 018 Spis treści Ruch jednowymiarowy Ruch na płaszczyźnie Rzut ukośny Ruch jednostajny po okręgu Ruch przyspieszony po okręgu Ruch krzywoliniowy Ruch jednowymiarowy Dział Fizyki zajmujący
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
SZCZEGÓŁOWE CELE EDUKACYJNE
Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego
Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
1. K 5 Ruch postępowy i obrotowy ciała sztywnego
1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość
Plan wynikowy (propozycja 61 godzin)
1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Cele operacyjne Uczeń: Konieczne K. Dopełniające D podaje przykłady zjawisk fizycznych występujących w przyrodzie
1 WYMAGANIA EDUKACYJNE Z FIZYKI KLASA 2bA ZAKRES ROZSZERZONY (61godz.) Klasa 2bA Rok szkolny 2018-2019 Nauczyciel: Lech Skała Oznaczenia: K wymagania konieczne (dopuszczający); P wymagania (dostateczny);
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka
1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji
Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.
v=s/t [m/s] s=v t [(m/s) s=m]
Ruch prostoliniowy jednostajny to ruch, w którym: wartość prędkości pozostaje stała: v=constans prędkość obliczamy ze wzoru: v=s/t [m/s] gdzie s- droga, t- czas wykres zależności prędkości od czasu v(t)
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)
1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.
Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego
Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)
Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu
R podaje przykłady działania siły Coriolisa
SZCZEGÓŁOWE WYMAGANIA Z FIZYKI CZĘŚĆ I KINEMATYKA podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Mechanika Teoretyczna Kinematyka
POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).
Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI NA POZIOMIE ROZSZERZONYM
SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI NA POZIOMIE ROZSZERZONYM Kinematyka Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry podaje przykłady zjawisk fizycznych występujących