MECHANIKA II. Dynamika układu punktów materialnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "MECHANIKA II. Dynamika układu punktów materialnych"

Transkrypt

1 MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej daniel.lewandowski@pwr.edu.pl Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

2 Układy punktów materialnych - stopnie swobody Różnorodne układy punktów materialnych połaczonych nieodkształcalnymi i nieważkimi prętami lub odkształcalnymi sprężynami. m i m i+1 Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

3 Układy punktów materialnych Stopnie swobody Układ punktów materialnych Zbiór punktów materialnych, w którym położenie każdego punktu jest zależne od położenia innych punktów. Stopnie swobody Stopniem swobody jest każda zmienna pozwalajaca opisać stanu układu fizycznego, czyli położenie jego poszczególnych części w przestrzeni. Ilość stopni swobody: 1 punkt materialny -> 3 stopnie swobody n-punktów -> 3*n stopni swobody Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

4 Bryła sztywna Układ punktów nieswobodny lub swobodny W zależności od przyłożonych więzów lub ich braku. Bryła sztywna Układ punktów punktów połaczonych w taki sposób iż ich wzajemne odległości nie ulegaja zmianie. Ilość stopni swobody dla układu swobodnego - 6. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

5 Siły dla układu punktów x z 0 y i r i P i m i r c z i A i S ij c x i m j r j Sji A j P j y Elementy opisu: Punkty materialne A i, A j o masach m i oraz m j Siły zewnętrzne: P i, P j Siły wewnętrzne: S ij = S ji Ruch punktów układu zależny od sił zewnętrznych i wewnętrznych. Na każdy punkt A i działa n 1 sił S ij wobec czego sił wewnętrznych jest: n(n 1) (1) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

6 Siły dla układu punktów - 2 Oddziaływanie masy m i na masę m j jest równe co do wartości jak m j na m i. Wobec tego suma wszystkich sił wewnętrznych: j=1 S ij = 0 (2) Podobnie jest dla sumy momentów względem dowolnego bieguna: j=1 M o ( S ij ) = r i ( S ij ) = 0 (3) j=1 Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

7 Dynamika układu punktów Punkt materialny układu można rozpatrywać jako punkt materialny swobodny na który działaja siły zewnętrzne i wewnętrzne jako oddziaływania wszystkich pozostałych punktów układu. Równanie różniczkowe dla i-tego punktu materialnego d 2 dt 2 (m i r i ) = P n 1 i + S ij (4) Dla n punktów będzie to 3n równań różniczkowych! Rozwiazanie takiego układu jest bardzo trudne i możliwe tylko w szczególnych przypadkach. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

8 Środek masy układu Środek masy układu to taki punkt c o współrzędnych x c, y c, z c wskazywany przez wektor wodzacy r c. x z 0 P i m i r i c A i S ij m j r r j c z i z c x i y i x c y c Sji A j P j y r c = 1 m i r i gdzie : m = m We współrzędnych kartezjańskich: x c = 1 m m i x i y c = 1 m m i y i m i (5) z c = 1 m m i z i Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

9 Środek masy układu - 2 Środek ciężkości Jeżeli układ punktów materialnych znajduje się w jednorodnym polu grawitacyjnym to środek masy pokrywa się ze środkiem ciężkości. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

10 Zasada ruchu środka masy Dla pojedynczego punktu równanie ruchu miało następujac a postać: d 2 dt 2 (m i r i ) = P n 1 i + S ij (6) Wypisujac równania dla wysztkich n punktów bryły oraz sumujac je do jednego równania otrzymamy: gdzie: wzajemnie. d 2 dt 2 (m i r i ) = P i + S ij (7) S ij = 0 ponieważ wszystkie sił wewnętrznych znosza się Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

11 Zasada ruchu środka masy - 2 Otrzymujemy z poprzedniego równania: d 2 dt 2 (m i r i ) = P i (8) Zakładajac, że zmiany masy w czasie nie istnieja można napisać d 2 dt 2 (m i r i ) = m i d 2 r i dt 2 = d2 dt 2 (m i r i ) } {{ } m r c (9) a dalej : d 2 dt 2 (m r c) = m d2 r c dt 2 = m a c = P i (10) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

12 Zasada ruchu środka masy - 3 Sumarycznie można zapisać wszystkie siły zewnętrzne jako jedna siłę: P i = P (11) a otrzymamy równanie opisujace ruch środa masy układu punktów materialnych: m a c = P = mẍ c = P x mÿ c = P y m z c = P z Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

13 Zasada ruchu środka masy - 4 Podsumowujac: Siły wewnętrzne nie maja wpływu na ruch środka masy Ruch środka masy nie zależy od tego, gdzie sa przyłożone siły zewnętrzne (czyli od momentu ogólnego tych sił względem jakiegokolwiek punktu). Zasada ruchu środka masy Środek masy każdego układu punktów materialnych porusza się tak, jakby była w nim skupiona cała masa układu i jakby do tego punktu przyłożone były wszystkie siły zewnętrzne. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

14 Zasada ruchu środka masy - 5 Jeżeli suma geometryczna sił zewnętrznych jest równa zero (znosza się lub ich brak) to: P = 0 = m a c = 0 = a c = 0 = v c = const (12) Zasada zachowania ruchu środka masy Jeżeli suma sił zewnętrznych działajacych na dany układ punktów materialnych jest równa zero to środek masy pozostaje w spoczynku lub porusza się ruchem jednostajnie prostoliniowym. Zasada ruchu środka masy pozwala wyznaczyć zmianę pędu ogólnego układu za pomoca pędu jednego tylko punktu c, w którym jest skupiona całkowita masa m (ale o tym będzie dalej). Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

15 Ruchu środka masy - przykłady Skok wzwyż - dlaczego w takiej dziwnej pozycji? Fosbury Flop -> TED Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

16 Przykłady na ruch środka masy układu Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

17 Zadanie 1 Układ mas przedstawiony na rysunku znajduje się w spoczynku. Masy m 1, m 2, m 3 połaczone sa nieważka, nierozciagliw a lina przeciagnięt a przez krażki. Powierzchnie współpracujace sa gładkie - brak tarcia. Wyznaczyć przesunięcie masy m 4 jeśli ciężar m 3 przesunie się o wysokość h ( na skutek działania sił wewnatrz układu). x m 1 α G 1 m 4 R m 2 G 4 G 2 h m 3 G 3 y Dane: m 1 = 10 kg, m 2 = 20 kg, m 3 = 15 kg, m 4 = 10 kg, α=30 o, h=0.5 m. Szukane: Przesunięcie masy m 4 względem układu współrzędnych xy. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

18 Zadanie 1 - rozwiazanie cz.1 Zasada zachowania ruchu środka masy Korzystajac z pozostawania w spoczynku układu nas możemy napisać: m a c = Pi = m c ẍ = P xi = 0 (13) = m c ẋ c = C 1 = m c x c = C 1 t + C 2 (14) ẋ c = 0, x c = const. = C 1 = 0, C 2 = const. (15) mx c = C 2 = x c = const. (16) Wniosek Oznacza to, iż mimo zmiany położenia poszczególnych mas środek ciężkości całego układu musi pozostawać w tym samym miejscu. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

19 Zadanie 1 - rozwiazanie cz.2 Zadanie rozwiazujemy porównujac położenie przed i po przesunięciu ciężarów m 1, m 2 i m 3. Środek ciężkości układu obliczamy na podstawie sumy środków ciężkości poszczególnych mas wchodzacych w nasz układ. x c = m i x i gdzie m = m i (17) m Uwzględniajac siły grawitacji: mgx c = Gx c = 4 m i gx i (18) 4 G i x i (19) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

20 Zadanie 1 - rozwiazanie cz.3 m 1 m 2 m 3 y x α m 4 G2 G 1 G 4 G3 d b c h a t Zapisujac położenie przed przesunięciem (a 0 ) i po przesunięciu (a 1 ) otrzymamy: 4 G 1 (d + a 0 ) + G 2 (b + a 0 ) + G 3 a 0 + G 4 (a 0 + c) = G i x i (20) G 1 (d h cos α+a 1 )+G 2 (b h+a 1 )+G 3 a 1 +G 4 (a 1 +c) = 4 G i x i (21) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

21 Zadanie 1 - rozwiazanie cz.4 Porównujac powyższe równania otrzymamy: G 1 (d + a 0 ) + G 2 (b + a 0 ) + G 3 a 0 + G 4 (a 0 + c) = G 1 (d h cos α + a 1 ) + G 2 (b h + a 1 ) + G 3 a 1 + G 4 (a 1 + c) (22) Przekształcajac i porzadkuj ac otrzymujemy: G 1 (a 0 a 1 )+G 2 (a 0 a 1 )+G 3 (a 0 a 1 )+G 4 (a 0 a 1 ) = G 1 h cos α G 2 h (23) (G 1 + G 2 + G 3 + G 4 )(a a 1 ) = G 1 h cos α G 2 h (24) a 0 a 1 = x = G 1h cos α G 2 h G 1 + G 2 + G 3 + G 4 (25) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

22 Zadanie 1 - rozwiazanie cz.5 Podstawiajac dane numeryczne: x = = 0.26 m (26) Przyjmujac zwrot układu w lewa stronę i poczatek układu dla a 0 = 0 otrzymujemy: x = a 0 a 1 (27) 0.26 = 0 a 1 = a 1 = 0.26 m (28) Oznacza to iż klocek m 4 przesunie się w lewa stronę. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

23 Zadanie 1 - rozwiazanie cz.6 y x Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

24 Zadanie 1 - rozwiazanie cz.6 y x Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

25 Pęd układu punktów materialnych Pęd układu jest zdefiniowany jako suma poszczególnych pędów: H = m i v i = H i (29) Suma pędów Pęd całkowity H może być równy zero mimo, że jego poszczególne składowe nie sa zerowe. Suma pędów dodatniego i ujemnego może się znosić. Analizujac pęd układu punktów możemy napisać: H = m i v i = m i d r i dt = d dt m i r i = d dt (m i r c ) = m v c (30) gdzie: c to środek masy układu, r c to wektor opisujacy jego położenie, v c wektor prędkości środka masy. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

26 Zmiana pędu układu punktów materialnych Analizujac zmianę pędu układu otrzymamy: d H dt = d dt (m v c) = m a c = P i = P = dh x dt dh y dt dh z dt = mẍ c = P x = mÿ c = P y = m z c = P z (31) Zasada zmiany pędu Pochodna względem czasu pędu układu punktów materialnych równa jest sumie geometrycznej wszystkich sił zewnętrznych działajacych na punkty tego układu. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

27 Przyrost pędu d H dt = P = d H = P dt = H2 t2 dh = P dt (32) H 1 t 1 H = H 2 H 1 = t2 t 1 P dt (33) Przyrost pędu układu punktów materialnych jest równy popędowi sumy geometrycznej sił zewnętrznych. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

28 Zasada zachowania pędu dla układu punktów materialnych d H dt = 0 = m a c = H = m v c = const. (34) Zasada zachowania pędu Jeżeli suma sił działajacych na układ punktów materialnych jest równa zero to pęd ma wartość stała. Oznacza to, że środek masy ciała znajduje w spoczynku lub porusza się ruchem jednostajnie prostoliniowym. Przydatne do... zagadnień dynamicznych i sił chwilowych. Przykłady za chwilę. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

29 Zasada zachowania pędu - przykłady Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

30 Zasada zachowania pędu - przykłady Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

31 Kręt układu punktów materialnych Inaczej moment pędu Kręt dla układu punktów zdefiniowany jest jako suma poszczególnych krętów: K x = K 0 = K i0 = ( r i m v i ) = K y = K z = K ix K iy K iz (35) Kręt układu punktów materialnych względem osi układu współrzędnych x, y, z jest równy sumie krętów wszystkich punktów układu względem tych osi. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

32 Kręt układu punktów materialnych Liczymy kręt układu punktów materialnych względem dowolnego punktu 0. Możemy go zapisać następujaco: K 0 = r i H i = ( ρ i r 0 ) H i (36) 0 ρ i m i A i C r 0 v i r i 0 v c v 0 Liczac pochodna krętu względem czasu otrzymamy: K 0 = ( ρ i H i r 0 H i + r i Hi ) = ( v i H i v 0 H i ) + r i Hi (37) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

33 Zasada krętu dla układu punktów Kontynuujac poprzednie rozważania otrzymujemy: K 0 = K 0 = ( v i H i v 0 H i ) + r i Hi (38) ( v i m i v i v 0 H i ) + r i P i (39) K 0 = v 0 H i + M 0 (40) W przypadku gdy prędkość bieguna 0 jest równa zero ( v 0 = 0) lub v 0 = v c, wyrażenie v 0 H = 0. Co daje: K 0 = M 0 (41) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

34 Zasada zachowania krętu dla układu punktów Z równania możemy wysnuć następujacy wniosek: K 0 = M 0 (42) Pochodna względem czasu krętu układu punktów materialnych względem dowolnego punktu 0 równa się sumie geometrycznej momentów sił zewnętrznych, jeżeli punktem 0 jest punkt nieruchomy lub środek masy układu. Przekształcajac powyższe równanie otrzymamy: Całkujac dalej: K 0 = d K 0 dt K2 = M 0 = d K 0 = M 0 dt (43) K 1 d K 0 = t2 t 1 M0 dt (44) Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

35 Zasada zachowania krętu dla układu punktów Ostatecznie otrzymujemy równanie : K 0 = K 20 K 10 = t2 t 1 M0 dt (45) Zasada zachowania krętu Jeżeli suma geometryczna momentów sił zewnętrznych względem punktu stałego 0 lub środka masy wynosi zero, to kręt układu względem tych punktów ma wartość stała. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

36 Szczególny przypadek krętu Obrót wokół osi Rozpatrzymy przypadek obrotu układu punktów materialnych wokół ustalo osi. Punkty sa rozłożona jest po pewnej objętości - do analizy wybieramy jeden punkt elementarny o masie dm. v = ω r lub v = ω r (46) z Elementarny kręt wynosi: ω r v dm dk = v r dm = ω r r dm (47) Dla układu punktów: K z = dk = ω r 2 dm (48) M M Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

37 Szczególny przypadek krętu Obrót wokół osi ω z r v dm K z = M ω r 2 dm (49) Ponieważ prędkość obrotowa jest taka sama dla każdego z punktów bryły - można ja wyciagn ać przed całkę i otrzymać: K z = ω r 2 dm = ωi (50) M gdzie I jest momentem bezwładności dla układu punktów materialnych względem osi z. Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

38 Zasada zachowania krętu układu punktów - przykłady Po co w helikopterze ogon? Brak siły na ogonie -> Youtube Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

39 Zasada zachowania krętu układu punktów - przykłady Jak kot spada zawsze na cztery łapy? Smarter Every Day Cats falling -> Youtube Daniel Lewandowski (W10/k10) MECHANIKA II. Dynamika układu punktów materialnych January 29, / 39

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Zasady zachowania. Fizyka I (Mechanika) Wykład VI: Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 1 - Organizacja wykładu (sprawy zaliczeniowe, tematyka). Więzy i ich klasyfikacja Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F Praca i energia Praca

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów

IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów Jan Królikowski Fizyka IBC 1 Ruch swobodny i nieswobodny. Stany równowagi Rozważamy ciało w pewnym układzie inercjalnym (UI). Gdy: prędkość tego

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1027 Mechanika

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo