MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
|
|
- Grzegorz Marczak
- 5 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko
2 PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn tej siły przez długość przesunięcia (1) Jednostka kg m J = Nm = 2 s m Rys. 1 Wektor siły jest nachylony do kierunku przesunięcia pod kątem α
3 PRACA MECHANICZNA SIŁY STAŁEJ (2) WNIOSEK: Pracę wykonuje tylko składowa siły stycznej do toru F t. Praca składowej normalnej do toru F n jest równa zeru. Z równania (2) wynika, że dla: WNIOSEK: Praca jest skalarem, może przyjmować wartości dodatnie, ujemne i równe zeru.
4 PRACA MECHANICZNA SIŁY ZMIENNEJ Definicja pracy elementarnej: Pracą elementarną siły zmiennej na przesunięciu nazywamy iloczyn skalarny siły F ρ ds ρ przez to przesunięcie elementarne. (3) Ponieważ (4) to (5) ρ ρ ρ ρ ρ ρ ρ ρ F = i X + jy + kz ds = i dx + jdy + kdz Podstawiając do wzoru (3): oraz otrzymamy po wymnożeniu i podstawieniu do (5) : (6)
5 PRACA MECHANICZNA SIŁY ZMIENNEJ Pracę całkowitą od położenia 1 do położenia 2 na torze otrzymamy, całkując wyrażenie przedstawiające pracę elementarną. (7) Praca siły na pewnym przesunięciu jest równa sumie prac sił składowych na odpowiednich przemieszczeniach składowych.
6 PRACA MECHANICZNA PO OKRĘGU Gdy siła F ρ działa na punkt poruszający się po torze kołowym (np. siła naciągu pasa przekładni pasowej), otrzymamy Rys. 2 Wyrażenie F t r określa moment siły (8) względem środka O (np. środka tarczy). F ρ Nazywamy go momentem obrotowym (9)
7 PRACA MECHANICZNA PO OKRĘGU Wzór na pracę elementarną przybiera postać: (10) ϕ ϕ2 Pracę całkowitą na drodze kątowej od 1 do określa całka (11)
8 F W 1 2 jeśli x koń W s = Fdx = k s = x x kx koń pocz 2 x pocz ( ) x x x koń pocz kx dx = k = x pocz 1 2 = 0 Ws = 1 kx 2 kx 2 2 pocz x x koń pocz xdx 1 2 kx = 2 koń
9 PRACA WYKONANA PRZEZ SIŁĘ ZEWNĘTRZN TRZNĄ W zewn W s JEŚLI KLOCEK PRZYMOCOWANY DO SPRĘŻ ĘŻYNY JEST W SPOCZYNKU NA POCZĄTKU I NA KOŃCU PRZEMIESZCZENIA, TO PRACA WYKONANA NAD KLOCKIEM PODCZAS JEGO RUCHU PRZEZ SIŁĘ ZEWNĘTRZN TRZNĄJEST PRZECIWNA DO PRACY, WYKONANEJ NAD NIM PRZEZ SIŁĘ ŁĘSPRĘŻYSTOŚCI. = Wzewn = 1 kx 2 2 W = E Es = 1 kx 2 2
10 PRACA MECHANICZNA siły sprężystości F ρ Siła sprężystości jest wielkością zmienną proporcjonalną do wydłużenia sprężyny. Przyjmując oś sprężyny za oś x napiszemy (12) gdzie c stała sprężyny. Praca elementarna siły sprężystości jest równa (13) Składowe siły sprężystości
11 PRACA MECHANICZNA siły sprężystości Po podstawieniu (14a) Praca całkowita siły sprężystości na drodze całkowitego wydłużenia sprężyny będzie równa (14b) Uwzględniając, że cl = F otrzymamy ostatecznie (15)
12 PRACA MECHANICZNA siły ciężkości z z 1 G=mg z 2 y x
13 PRACA MECHANICZNA siły ciężkości Praca elementarna Składowe siły ciężkości Zatem praca elementarna Praca całkowita Gdy z 1 >z 2 to A > 0, gdy z 1 < z 2 to A < 0.
14 MOC CHWILOWA Pracę odniesioną do jednostki czasu nazywamy mocą. Moc chwilowa (17) wyrażenie na moc chwilową przedstawimy w następującej postaci: lub (18)
15 MOC W RUCHU OBROTOWYM W ruchu obrotowym Ponieważ W związku z tym (20)
16 MOC I SPRAWNOŚĆ Gdy prędkość w ruchu obrotowym zadana jest za pomocą prędkości obrotowej n, obr/min wówczas prędkość kątową ω obliczamy z ze wzoru: Po podstawieniu do (20) wyrazimy moc w postaci: (21) Jednostką podstawową mocy mocy jest W = J/s = Nm/s Jednostki techniczne to: kw i MW
17 SPRAWNOŚĆ Sprawnością mechaniczną maszyny lub silnika nazywamy stosunek pracy (lub mocy) użytecznej do pracy (lub mocy) włożonej. (22)
18 ZASADA PRACY I ENERGII KINETYCZNEJ Po wyrażeniu siły F t w postaci: Wzór na pracę elementarną przybiera postać ds/dt = v Prawa strona tego równania jest różniczką zupełną funkcji E = mv 2 / 2 zwanej energią kinetyczną poruszającego się punktu materialnego.
19 ZASADA PRACY I ENERGII KINETYCZNEJ Zatem (23) Po całkowaniu otrzymujemy (24) Energia kinetyczna poruszającego się punktu materialnego rośnie lub maleje o wielkość pracy wykonanej przez siły działające na ten punkt materialny.
20 POLE SIŁ Określić pole sił, to znaczy podać wektor-funkcję położenia (25) Albo jego składowe
21 Pole magnetyczne Ziemi Pole magnetyczne magnesu trwałego
22 Pola sił i ruchy Powtórzenie
23 LINIE POLA SIŁ Linię charakteryzującą się tym, że w każdym jej punkcie wektor pola jest styczny do niej, nazywamy linią pola sił. Równanie różniczkowe tych linii ma postać (26) Jeżeli linie pola sił są prostymi równoległymi, pole nazywamy jednorodnym.
24 PRACA W POLU SIŁ Pracę całkowitą wykonaną przez siły pola określa całka (27) Aby obliczyć pracę całkowitą, należy ustalić: a) współrzędne punktu początkowego i końcowego (1 i 2), b) wektor siły pola F F x, y, z,. ρ = ρ ( ) c) równanie toru, wzdłuż którego pole wykonuje pracę.
25 PRZYKŁAD 1 ρ ρ ρ Obliczyć pracę siły 2 2 F = y i x j od położenia I (0, 1) do II (1, 0) gdy praca jest wykonywana: Rys. 3 a) po linii prostej y = 1 x, 2 2 b) po okręgu x + y = 1, c) po osiach wsp. x = 0, y = 0. Jednostki: [F] N, [x, y] m
26 Dla przykładu a) X = y 2, Y = -x 2, równanie (27) przybiera postać: Lub Ponieważ y =1 x to dy = dx Po scałkowaniu w granicach x(0,1) otrzymamy:
27 Dla przykładu b) praca po okręgu x 2 + y 2 = 1, X = y 2, Y= -x 2 Po podstawieniu do (27) Po scałkowaniu:
28 Dla przykładu c) praca po osiach współrzędnych: Równanie osi x ma postać y = 0 Równanie osi y ma postać x = 0 Zatem WNIOSEK: w tym zadaniu praca pola sił zależy od kształtu toru Takie pola sił, w których praca zależy od kształtu toru, nazywamy polami niepotencjalnymi lub wirowymi.
29 PRZYKŁAD 2 Niech w poprzednim przykładzie siła pola będzie określona równaniem gdzie a i b stałe, Składowe siły Praca całkowita od położenia 1 do położenia 2 będzie określona wzorem Φ - nazywamy funkcją pola sił.
30 FUNKCJA POLA SIŁ ( ) Funkcją pola sił nazywamy funkcję położenia x, y, z, której różniczka zupełna jest równa pracy elementarnej sił pola. W omawianym przykładzie funkcja ta miała postać : Φ gdyż W polu potencjalnym praca nie zależy od kształtu toru, a jedynie od położenia początkowego i końcowego siły pola - równa jest wartości funkcji pola w położeniu końcowym i początkowym. Różniczka zupełna funkcji pola jest równa
31 FUNKCJA POLA SIŁ Aby ta różniczka zupełna była równa pracy elementarnej muszą być spełnione zależności Wektor pola sił możemy zapisać w postaci: Prawa strona jest gradientem funkcji Φ, czyli
32 POTENCJAŁ POLA SIŁ Potencjałem pola sił nazywamy skalarną ( ) funkcję położenia U x, y, z, której pochodne cząstkowe względem odpowiednich kierunków są równe składowym siły pola w tych kierunkach ze znakiem ujemnym. Gradient tej funkcji jest równy sile pola ze znakiem (-). Miejsce geometryczne punktów, dla których ( x, y, z) const U = nazywamy powierzchnią ekwipotencjalną.
33 PRACA W POTENCJALNYM POLU SIŁ Praca elementarna W polu potencjalnym praca elementarna jest różniczką zupełną pewnej funkcji skalarnej - potencjału pola sił - ze znakiem ujemnym. Praca całkowita stąd W polu potencjalnym praca całkowita jest równa różnicy potencjałów w położeniu początkowym i końcowym.
34 Potencjał ma postać PRACA W POLU SIŁ CIĘŻKOŚCI Praca całkowita od położenia 1 do położenia 2 będzie równa Przyjmiemy, że na poziomie Ziemi (na której znajduje się położenie 2) potencjał jest równy zeru. Wtedy praca całkowita wynosi gdzie h wysokość położenia 1 nad poziomem Ziemi.
35 ZASADA ZACHOWANIA ENERGII MECHANICZNEJ Pracę U = mgh nazywamy energią potencjalną. Jest to praca, jaką wykona pole sił ciężkości przy przemieszczeniu masy m z wysokości h na powierzchnię Ziemi. Z zasady pracy i energii kinetycznej energii potencjalnej δa = du δa = de wynikaże: oraz pracy i de = du czyli Jest to forma różniczkowa zasady zachowania energii mechanicznej.
36 ZASADA ZACHOWANIA ENERGII MECHANICZNEJ Całkując to równanie otrzymujemy W polu potencjalnym suma energii kinetycznej i potencjalnej jest w każdym położeniu wielkością stalą. W odniesieniu do poruszającego się punktu zasadę tę możemy przedstawić za pomocą wzoru
37 PRZYKŁAD 3 Ciało o masie m, zawieszone na linie przerzuconej przez krążek, zaczyna poruszać się w górę równi pochyłej o kącie nachylenia α (rysunek poniżej). Obliczyć pracę sił i momentu po przebyciu przez to ciało drogi s, jeśli dane są współczynnik tarcia µ ciała o równię, promień krążka r i moment M działający na krążek (pominąć tarcie cięgna o krążek). Dane: m, s,α, M, r, µ
38 Rozwiązanie Całkowita praca jest równa sumie prac: momentu o wartości M; wypadkowej sił: ciężkości G oraz nacisku N; siły tarcia T. Praca momentu M: A = Mϕ M gdzieφ kąt, o jaki obrócił się krążek w czasie, gdy ciało przebyło drogę s Mamy: ϕ = s Zatem: = A M r
39 Praca sił G oraz N: α N ρ bo F = GN Siła tarcia: F ρ GN G ρ Praca siły tarcia T:
40 Zatem praca wszystkich sił i momentu wynosi:
41 PRZYKŁAD 4 Znaleźć, jaką moc uzyskuje silnik samochodu o masie 1 Mg po 10 sekundach, jeśli samochód rusza ze stałym przyspieszeniem a = 1 m/s 2 : (1) po drodze poziomej; (2) pod górę o nachyleniuα=30 ; (3) z góry o takim samym nachyleniu. Współczynnik tarcia kół samochodu o drogę wynosi Rozwiązanie t 0 = 10s Ruch jest prostoliniowy, a więc po czasie :
42 Rozwiązanie (1) T ρ N ρ F ρ silnika G ρ
43 Rozwiązanie (1) Zatem moc chwilowa silnika wynosi:
44 Rozwiązanie (2) N ρ F ρ silnika T ρ G ρ
45 (3) Rozwiązanie T ρ N ρ F ρ silnika G ρ moc hamowania
46 PRZYKŁAD 5 Wózek o masie m poruszał się po torze płaskim bez tarcia z prędkością v 0. Po przyłożeniu stałej siły hamującej zatrzymał się, przebywając odcinek s. Obliczyć wartość siły hamującej oraz czas hamowania. Dane: m, v 0, s Szukane: F, t
47 Rozwiązanie Zasada równoważności pracy i energii kinetycznej: gdzie W 1 2 praca siły hamowania, F siła hamująca. Podstawiając:
48 Zasada pędu: Stąd:
49 PRZYKŁAD 6 Z wierzchołka równi o kącie nachyleniaαiwysokości h puszczono ciało (bez prędkości początkowej). Współczynnik tarcia ciała o równię wynosi µ. Obliczyć czas ruchu i prędkość końcową na dole równi. Dane:α, h, µ Szukane: v 1, t
50 Rozwiązanie Zasada równoważności pracy i energii: W 0 1 =
51 Podstawiając: Czas ruchu obliczymy z zasady pędu:
52 Siła wypadkowa F w jest równa: Podstawiając:
53 PRZYKŁAD 7 Klocek został ustawiony na wierzchołku równi o kącie nachylenia α. Gdyby klocek zsunął się w dół bez tarcia, uzyskałby na dole równi prędkość v 1. Z kolei dla ruchu z tarciem prędkość wynosi ½v 1. Oblicz współczynnik tarcia µ klocka o równię. Dane:α, v 1 Szukane: µ
54 Bez tarcia: Zasada równoważności pracy i energii:
55 Bez tarcia: Stąd obliczymy wysokość h:
56 Z tarciem: Zasada równoważności pracy i energii: Podstawiając:
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoMECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowoDynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Bardziej szczegółowoI. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Bardziej szczegółowoMECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Bardziej szczegółowoMechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Bardziej szczegółowoMECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Bardziej szczegółowoZakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Bardziej szczegółowoMECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowoTadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Bardziej szczegółowoFizyka 5. Janusz Andrzejewski
Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin
Bardziej szczegółowoMechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Bardziej szczegółowoWykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowoPraca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku
Bardziej szczegółowoMECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Bardziej szczegółowoFUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
Bardziej szczegółowoMECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie
Bardziej szczegółowoMECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.
Bardziej szczegółowoPODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu
Bardziej szczegółowoPodstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoFizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Bardziej szczegółowoFizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowoLXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
Bardziej szczegółowoMECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Bardziej szczegółowoMECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Bardziej szczegółowov 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Bardziej szczegółowoEgzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Bardziej szczegółowoMiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Bardziej szczegółowoZasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Bardziej szczegółowoElementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Bardziej szczegółowoDYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Bardziej szczegółowoKinematyka płynów - zadania
Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,
Bardziej szczegółowo05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.
Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Bardziej szczegółowoPraca i energia. Zasada zachowania energii mechanicznej. Środek masy. Praca
Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Praca Uwaga: Zadania w tej części rozwiązujemy przy pomocy twierdzenia o pracy i energii kinetycznej lub zasady zachowania energii
Bardziej szczegółowoWektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Bardziej szczegółowoPraca w języku potocznym
Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy
Bardziej szczegółowoZasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Bardziej szczegółowoRuch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
Bardziej szczegółowoPRACA. MOC. ENERGIA. 1/20
PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej
Bardziej szczegółowo3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Bardziej szczegółowoPraca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Bardziej szczegółowoZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Bardziej szczegółowoPrzykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum
Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział
Bardziej szczegółowo1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowoRuch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.
Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Bardziej szczegółowoSiły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Bardziej szczegółowoBlok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Bardziej szczegółowoFizyka 1 (mechanika) AF14. Wykład 7
Fizyka 1 (mechanika) 1100-1AF14 Wykład 7 Jerzy Łusakowski 21.11.2016 Plan wykładu Praca i energia Siła a energia potencjalna Prędkość i przyspieszenie kątowe Moment siły i moment pędu Praca i energia Praca
Bardziej szczegółowoPRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Bardziej szczegółowoJ. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Bardziej szczegółowoMECHANIKA II. Dynamika układu punktów materialnych
MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoWydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Bardziej szczegółowoZasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
Bardziej szczegółowoR o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
Bardziej szczegółowoDynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Bardziej szczegółowoBryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bardziej szczegółowoDynamika ruchu obrotowego
Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoWykład Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania DYNAMIKA
DYNAMIKA Wykład 4. 4.1. Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania Słyszę i zapominam. Widzę i pamiętam. Robię i rozumiem. -Konfucjusz Dziecko ześlizguje się ze zjeżdżalni wodnej
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoRuch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Bardziej szczegółowoPrawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Bardziej szczegółowoZasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Bardziej szczegółowobędzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Bardziej szczegółowolim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Bardziej szczegółowoWykład Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania DYNAMIKA
DYNAMIKA Wykład 4. 4.1. Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania Słyszę i zapominam. Widzę i pamiętam. Robię i rozumiem. -Konfucjusz Dziecko ześlizguje się ze zjeżdżalni wodnej
Bardziej szczegółowoPierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowoWykład Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania DYNAMIKA
DYNAMIKA Wykład 4. 4.1. Energia kinetyczna potencjalna 4.2. Praca i moc 4.3. Zasady zachowania Słyszę i zapominam. Widzę i pamiętam. Robię i rozumiem. -Konfucjusz Dziecko ześlizguje się ze zjeżdżalni wodnej
Bardziej szczegółowoDYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Bardziej szczegółowoRównania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Bardziej szczegółowoRównania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Bardziej szczegółowo