MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
|
|
- Józef Kaczmarczyk
- 5 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko
2 Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie punkty ciała poruszają się w płaszczyznach równoległych do pewnej płaszczyzny Π, zwanej płaszczyzną kierującą (Rys. 1). Przez ciało sztywne prowadzimy prostą l prostopadłą do płaszczyzny Π.
3 Opis Ruchu Przekroju Bryły Po Płaszczyźnie Kierującej Własności: Podczas dowolnego ruchu ciała prosta l porusza się ruchem postępowym i jest stale prostopadła do Π. Podczas ruchu obrotowego ciała wokół prostej l punkty leżące na prostej równoległej do l mają te same prędkości i przyspieszenia. Rys.1 Wniosek! Ruch płaski jest określony, jeżeli znamy ruch przekroju bryły po płaszczyźnie kierującej.
4 Opis Ruchu Przekroju Bryły Po Płaszczyźnie Kierującej Bryła wykonuje ruch płaski. Przekrój bryły S porusza się po płaszczyźnie rysunku z położenia I do II. I sposób (linia czerwona): Ruch postępowy przekroju z położenia I do I A ; Obrót przekroju dookoła A 1 o kąt φ. II sposób (linia niebieska): Ruch postępowy przekroju z położenia I do I B ; Obrót przekroju dookoła B 1 o kąt φ. Rys. 2
5 Opis Ruchu Przekroju Bryły Po Płaszczyźnie Kierującej Twierdzenie W ruchu płaskim możemy przeprowadzić bryłę z położenia początkowego do położenia końcowego za pomocą ruchu postępowego oraz obrotowego dookoła osi prostopadłej do płaszczyzny kierującej i przechodzącej przez obrany biegun.
6 Obieramy punkty A i B danego przekroju (w położeniu I). Punkty te po wykonaniu ruchu zajmą położenie A 1 i B 1. Znajdujemy punkt C przecięcia się symetralnych odcinków AA 1 i BB 1. Widzimy, że ruch przekroju dokonał się za pomocą obrotu dookoła punktu C. Środek Obrotu Zastępczego Taki punkt nazywamy środkiem obrotu zastępczego (Rys. 3). Rys. 3
7 Środek Obrotu Chwilowego Punkty AB i A 1 B 1 obieramy nieskończenie blisko siebie. Ruch w nieskończenie krótkim czasie nazywamy ruchem chwilowym. Rys. 4 Ruch chwilowy przekroju po płaszczyźnie kierującej jest obrotem chwilowym dookoła punktu S zwanego środkiem obrotu chwilowego.
8 Środek Obrotu Chwilowego Własność! Środek S obrotu chwilowego leży w punkcie przecięcia się normalnych do torów punktów A i B (rys. 4). Rys. 4
9 Oś Obrotu Chwilowego Osią obrotu chwilowego nazywamy prostą przechodzącą przez środek obrotu chwilowego S i prostopadłą do płaszczyzny kierującej. Wokół tej osi dokonuje się również ruch chwilowy. Rys. 4
10 Centroidy i Aksoidy Punkty A 1 i B 1 poruszają się w płaszczyźnie po torach odpowiednio 1 i 2 (Rys. 5). S 1, S 2, S 3, środki obrotów chwilowych odpowiednio w położeniach I, II, III, Centroidą stałą C s nazywamy miejsce geometryczne środków chwilowych S i na płaszczyźnie stałej. Rys. 5
11 Centroidy i Aksoidy Przenieśmy teraz odcinki A 2 B 2, A 3 B 3, A 4 B 4, do odcinka A 1 B 1 (Rys. 5). Wierzchołki S 2, S 3, S 4, trójkątów A 2 B 2 S 2, A 3 B 3 S 3, A 4 B 4 S 4 znajdą się w położeniach S 2, S 3, S 4, Rys. 5 Centroidą ruchomą C r nazywamy miejsce geometryczne środków chwilowych S i na płaszczyźnie ruchomej, związanej z poruszającym się układem.
12 Centroidy i Aksoidy Aksoidą stałą nazywamy miejsce geometryczne osi obrotów chwilowych w układzie stałym (związanym z płaszczyzną kierującą). Jest to powierzchnia walcowa. Aksoidą ruchomą nazywamy miejsce geometryczne osi obrotów chwilowych w układzie ruchomym (związanym z poruszającą się bryłą). Jest to również powierzchnia walcowa.
13 Przewodnie prędkości i przyspieszeń Przewodnią prędkości (przyspieszeń) punktów poruszającego się ciała nazywamy linię, na której leżą końce wektorów ich prędkości (przyspieszeń). Przewodnią jest prosta.
14 Przewodnie prędkości i przyspieszeń v ρ v ρ D Jak znaleźć mając dane v ρ i? Końce wektorów prędkości punktów A i B dzielą przewodnią na odcinki proporcjonalne do odległości między nimi. D A v ρ B
15 Równania Ruchu Płaskiego Przyjmijmy układ współrzędnych x, y, związany z płaszczyzną kierującą. Na ruchomym przekroju S obierzmy dowolny biegun A jako początek ruchomego układu współrzędnych ξ, χ, związanego z poruszającym się przekrojem. r ρ i wektor położenia dowolnego punktu P w układzie stałym x, y. ρ wektor położenia punktu P i w układzie ruchomym ξ, χ. Rys. 3 r ρ A wektor położenia bieguna A w układzie stałym. Uwaga! ρ ρ ρ ρ r i = r i (t) i = i ( t) ρ ρ r A = r A (t) ρ i = const.
16 Równania Ruchu Płaskiego ϕ = ϕ(t) kąt zawarty między osią x a osią ξ. Położenie układu ruchomego względem układu stałego: x = x (t) y = y (t) A A A A ϕ = ϕ(t)
17 Równania Ruchu Płaskiego Kinematyczne RÓWNANIA RUCHU PŁASKIEGO w postaci wektorowej Uwzględniając rzuty tych wektorów otrzymamy RÓWNANIA RUCHU PUNKTU P.
18 Prędkość w ruchu Płaskim Prędkość punktu P przekroju poruszającego się po płaszczyźnie kierującej: prędkość punktu P przekroju prędkość obranego bieguna A, jednakowa w danej chwili dla wszystkich punktów przekroju. Jest to prędkość ruchu postępowego. Prędkość końca wektora A: ρ ρ i wskutek obrotu przekroju wokół bieguna
19 Prędkość w ruchu Płaskim Wektor prędkości dowolnego punktu przekroju: Prędkość dowolnego punktu w ruchu płaskim jest więc sumą geometryczną prędkości ruchu postępowego i prędkości ruchu obrotowego dookoła obranego bieguna.
20 Przyspieszenie w Ruchu Płaskim Przyspieszenie jest równe pochodnej wektora prędkości względem czasu: czyli ρ ρ ρ ρ ρ ρ 2 ρ Iloczyn wektorowy ω ( ω ) = ω( ω ) ω i i i, lecz w przypadku ruchu płaskiego wektory ω ρ i ρ są stale do siebie i prostopadłe, a więc ( ω ρ ρ co upraszcza równanie do i ) = 0 postaci
21 Przyspieszenie w Ruchu Płaskim gdzie przyspieszenie punktu A w ruchu postępowym przyspieszenie styczne punktu P pochodzące od obrotu ciała wokół punktu A. przyspieszenie normalne punktu P pochodzące od obrotu ciała wokół punktu A.
22 Przykład 1 Pręt AB o długości l umocowany jest poziomo na kołach o promieniach r tak, jak na Rys. 7. Koło o środku O obraca się ze stałą prędkością kątową ω. Znaleźć prędkość oraz przyspieszenie punktu B.
23 Obieramy układ współrzędnych x i y oraz ξ i χ tak, jak na rysunku. Oxy układ nieruchomy; Aξχ układ ruchomy. Wtedy ROZWIĄZANIE
24 ROZWIĄZANIE r ρ B = V ρ B = V B = a ρ B = a B =
25 Przykład 2 Obliczyć prędkość kątową pręta AB oraz prędkość liniową punktu B mechanizmu korbowo-wodzikowego w chwili gdy φ 1 = 60. Walec toczy się bez poślizgu po poziomej płaszczyźnie odległej od osi OB o promień walca 0,5 d. Dane: OA = d, AB = d 3, ω 1 = const. d d 3 ½d
26 Ponieważω 1 = const, więc ROZWIĄZANIE Równania ruchu punktu B: Należy znaleźć zależność pomiędzy kątami φ 1 i φ 2! d d 3 ½d
27 ROZWIĄZANIE Skorzystamy z twierdzenia sinusów: A zatem:
28 ROZWIĄZANIE Prędkość kątowa pręta AB jest równa: Równanie ruchu punktu B:
29 Prędkość liniowa punktu B: Dla φ 1 = 60 :
30 Przykład 3 Toczenie się walca po powierzchni v O v v v v v v + = v O ω v v 2 O v ω 2v v 2 r. postępowy + r. obrotowy = r. płaski ω = v/r
31 Przykład 3 Toczenie się walca po powierzchni v obr = v obr P r 1 v α O v obr prędkość punktu P w ruchu obrotowym
32 Przykład 3 Toczenie się walca po powierzchni
33 Przykład 4 Walec o promieniu r toczy się bez poślizgu po wewnętrznej stronie nieruchomej powierzchni walcowej o promieniu R, wprowadzony w ruch za pomocą korby OA. Prędkość kątowa korby wynosi ω 1. Znaleźć: Dane: r, R, ω 1. prędkości liniowe punktów A, B i D; prędkość i przyspieszenie liniowe walca.
34 ROZWIĄZANIE Korzystając z poprzedniego zadania: v D ω 2 v A
35 Przykład 5 Dla układu przedstawionego na rysunku obliczyć prędkości i przyspieszenia punktów A i B. Dane: OA = R, AB = L, H,ω 0,ε 0.
36 ROZWIĄZANIE
37 Wielkości pomocnicze: Ponieważ rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe, zatem:
38 Obliczmy najpierw przyspieszenie punktu A:
39 Przyjmujemy, że pręt AB porusza się ruchem postępowym oraz obrotowym wokół punktu A. a ρ Niech punktu A. BA przyspieszenie pręta AB w ruchu obrotowym wokół a ρ A przyspieszenie pręta AB w ruchu postępowym. Zatem:
40 Prędkość kątowa pręta AB (w ruchu obrotowym względem punktu A): Ponieważ nie znamy przyspie-szeniaε 1, nie obliczymy a tba. Zatem wykorzystamy fakt, iż punkt B porusza się po linii poziomej. Zatem a B ma również kierunek poziomy.
41 Suma rzutów na oś x: Suma rzutów na oś y:
42 Przykład 6 Oblicz prędkość punktów B i D płyty o kształcie trójkąta prostokątnego równoramiennego ABD mechanizmu pokazanego na rysunku. Dane: OA = AB = r,ω=const.
43 Współrzędne punktu B: ROZWIĄZANIE Współrzędne punktu D:
44 Prędkości punktów B i D obliczamy różniczkując odpowiednie współrzędne: Prędkość kątowa płyty ABD:
45 Przykład 7 Krążek o promieniu R toczy się bez poślizgu po płaszczyźnie poziomej z prędkością kątową ω(t). W punkcie A znajdującym się w odległości r od środka tarczy 0 zamocowano przegubowo sztywny pręt o długości 2R, którego drugi koniec B porusza się po płaszczyźnie poziomej. Znaleźć prędkość chwilową punktu B dla położenia pokazanego na rysunku. Dane: OA = r, R,ω(t)
46 ROZWIĄZANIE Obieramy kąt pomocniczyα. Wtedy: Prędkość punktu 0: Prędkość punktu A:
47 Obieramy pomocniczy kątβ. Wykorzystamy regułę rzutów:
48 Skorzystamy ze wzoru trygonometrycznego: Dodatkowo: Zatem: Wstawiając do reguły rzutów:
49 Przykład 8 Pręt AB o długości l, przymocowany przegubowo w punkcie A na obwodzie tarczy kołowej o promieniu R, zakończony wodzikiem B, który przesuwa się po torze pionowym. Tarcza toczy się bez poślizgu, a prędkość jejśrodka wynosi v 0 = const. Oblicz prędkość chwilową punktu B. Dane: OA = R, l, v 0.
50 ROZWIĄZANIE
51 Wykorzystamy regułę rzutów: Wzór trygonometryczny: Wtedy: Podstawiając otrzymujemy:
52 Przykład 9 W mechanizmie epicykloidalnym korba OA obraca się z prędkością kątowąω 0 i wprawia w ruch koło I o promieniu r, które jest zazębione z kołem II o promieniu 2r. Z kołem I jest na sztywno połączone koło III o promieniu 2r. Jaka powinna być prędkość kątowa ω II koła II, aby punkt C koła III był nieruchomy? Dane: r,ω 0. B
53 ROZWIĄZANIE 1. Ruch układu wyłącznie pod wpływem korby OA (dlaω II = 0):
54 2. Ruch układu wyłącznie pod wpływem ruchu obrotowego koła II (dlaω 0 = 0): Aby punkt C był nieruchomy, jego prędkość liniowa musi być równa zeru:
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Bardziej szczegółowoMechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Bardziej szczegółowoMECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
Bardziej szczegółowoMECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowobędzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Bardziej szczegółowoR o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to
Bardziej szczegółowoSTEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Bardziej szczegółowoMECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Bardziej szczegółowov 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Bardziej szczegółowoMechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Bardziej szczegółowo1. K 5 Ruch postępowy i obrotowy ciała sztywnego
1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość
Bardziej szczegółowoPF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowoMECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Bardziej szczegółowo12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Bardziej szczegółowoMECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Bardziej szczegółowoRok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Bardziej szczegółowoĆwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Bardziej szczegółowoCiało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu
Ruch obrotowy 016 Spis treści Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu bezwładności Ruch obrotowo-postępowy
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowoR o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y
Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α
Bardziej szczegółowoWYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Bardziej szczegółowo4.1. Modelowanie matematyczne
4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować
Bardziej szczegółowoVII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowoEtap 1. Rysunek: Układy odniesienia
Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać
Bardziej szczegółowoMechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Bardziej szczegółowoRÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Bardziej szczegółowoR o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
Bardziej szczegółowoPLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Bardziej szczegółowoPytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Bardziej szczegółowoBryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
Bardziej szczegółowoMECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie
Bardziej szczegółowoODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Bardziej szczegółowoRuch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Bardziej szczegółowo11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Bardziej szczegółowoJan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Bardziej szczegółowoMechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.
Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,
Bardziej szczegółowoZestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
Bardziej szczegółowoGeometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
Bardziej szczegółowoZadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Bardziej szczegółowoDefinicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Bardziej szczegółowoMechanika Teoretyczna Kinematyka
POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl
Bardziej szczegółowow jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Bardziej szczegółowoKONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Bardziej szczegółowoKORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoA. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Bardziej szczegółowoPodstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Bardziej szczegółowoRuch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Bardziej szczegółowoDynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Bardziej szczegółowoGEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Bardziej szczegółowoStożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
Bardziej szczegółowoGeometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Bardziej szczegółowo10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
Bardziej szczegółowoGEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Bardziej szczegółowoGrafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
Bardziej szczegółowoPraca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoRachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Bardziej szczegółowoWyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
Bardziej szczegółowoBryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
Bardziej szczegółowoKrzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Bardziej szczegółowoKlasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Bardziej szczegółowoWydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Bardziej szczegółowoI. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Bardziej szczegółowoGeometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
Bardziej szczegółowoPYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Bardziej szczegółowoTematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Bardziej szczegółowoRozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Bardziej szczegółowoFizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Bardziej szczegółowoTematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor
Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat
Bardziej szczegółowoWstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowoMechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Bardziej szczegółowoRozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoOpracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
Bardziej szczegółowoGeometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Bardziej szczegółowoPolitechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych
Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30
Bardziej szczegółowoMECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Bardziej szczegółowoBryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bardziej szczegółowoPrzykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Bardziej szczegółowoMechanika bryły sztywnej
WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka
Bardziej szczegółowo1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH
1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej
Bardziej szczegółowoKryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Bardziej szczegółowo