Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi się w przesrzeni z określoną prędkością nazywaną prędkością fali Zaem wielkość zaburzenia jes również funkcją położenia ( r!, ) r! funkcja ( r! 0, ) Dla danego miejsca 0 przedsawia zależność zaburzenia od czasu lub inaczej drgania ośrodka w ym miejscu Dla danej chwili 0 funkcja ( r!, 0) przedsawia przesrzenny rozkład zaburzenia migawkowe zdjęcie sanu ośrodka Weźmy pod uwagę falę, kóra w jednowymiarowym ośrodku rozchodzi się wzdłuż osi O z prędkością (, ) Zmieniamy układ na poruszający się z ą samą prędkością co zaburzenie W nowym układzie zaburzenie jes sacjonarne, nie zależy od czasu: ()
Ruch falowy 4- Transformacja Galileusza daje związek między współrzędnymi w obu układach Wracając do układu wyjściowego (w kórym zaburzenie rozchodzi się) orzymujemy ( ) Jes o w dalszym ciągu funkcja położenia i czasu, yle, że nie dowolna, ale zależna od ich specjalnej kombinacji Funkcję ) ( nazywa się (jednowymiarową) funkcją falową W przypadku wielowymiarowym funkcja falowa ma posać ( ) r!! Orzymamy eraz równanie różniczkowe ruchu falowego Czyli (a dla ruchu w przeciwnym kierunku wysarczy zmienić znak ) Powórne różniczkowanie daje albo po przekszałceniu orzymujemy osaecznie równanie różniczkowe ruchu falowego pochodne wewnęrzne
Ruch falowy 4-3 Ze względu na sposób jego orzymania, każda funkcja ypu ( ± ) spełnia o równanie Można się przekonać, że rozwiązania różniczkowego równania ruchu falowego spełniają zasadę superpozycji, zn, jeżeli ( ± ) i ( ± ) są funkcjami falowymi spełniającymi równanie ruchu falowego i o ich suma + eż jes rozwiązaniem ego równania ( + ), ( + Wynika o wpros z faku, że operacja różniczkowania jes rozdzielna względem dodawania funkcji Zasadę superpozycji można rozszerzyć na dowolną liczbę funkcji falowych Jeżeli ( ), ( ), n n( ) są funkcjami falowymi, o ich dowolna kombinacja liniowa n ( ) c ( ) c i dowolne sałe i i i jes eż funkcją falową, czyli spełnia odpowiednie równanie różniczkowe )
Ruch falowy 4-4 Fale harmoniczne Jeżeli funkcja falowa ma posać lub o nazywamy ją harmoniczną Dla usalonego miejsca, np 0 (, ) Asin[ k( ± )] (, ) A cos[ k( ± )] ( 0, ) Asin[ k( ± )] ± Asin( k ) saje się ona funkcją opisującą drgania harmoniczne o częsości kołowej ω k gdzie: T jes okresem ych drgań Dla usalonej chwili, np 0 ω π k T π (,0) A sin( k ) Asin( ) T orzymujemy funkcję przesrzenną okresową o okresie równym T Iloczyn T nazywa się długością fali λ a T okresem fali Zachodzi między nimi związek: Użya wcześniej wielkość k λ T k π λ nazywa się liczbą falową (ma wymiar m - ) W ym wypadku ω nazywamy częsością kołową fali i możemy dopisać kolejny związek ω k
Ruch falowy 4-5 Prędkość fazowa fali Podobnie jak dla drgań harmonicznych, argumen harmonicznej funkcji falowej nazywa się fazą fali (, ) Asin[ k( )] Asin( k ω) ϕ k ω W ogólnym przypadku możemy mieć do czynienia z różną od zera fazą począkową ϕ k ω + Pochodna fazy względem czasu daje, z dokładnością do znaku, częsość kołową fali ϕ ω a względem położenia liczbę falową Ich sosunek ϕ k π λ, ϕ 0 ϕ ω π λ λ ϕ k T π T jes prędkością fali Prędkość fali, kórą wprowadziliśmy na samym począku, była prędkością z jaką przemieszczała się określona faza fali (w układzie poruszającym się z prędkością faza w danym punkcie jes sała) Dlaego prędkość ę nazywamy prędkością fazową fali lub f f ω k λ T
Ruch falowy 4-6 Fale przesrzenne!!! ( r, ) Asin( k r ω ) k! - wekor falowy Kierunek wekora falowego pokrywa się z kierunkiem rozchodzenia się fali, a jego długość wynosi π k! λ Punky w przesrzeni, w kórych faza fali ma określoną warość!! k r ω cons worzą powierzchnie falowe (albo fazowe) Wekor k! jes w każdym punkcie powierzchni falowej prosopadły do niej Ze względu na kszał powierzchni falowych mówimy o falach płaskich, kulisych, walcowych, ip
Ruch falowy 4-7 Odbicie i załamanie fal Załamanie fali na granicy dwóch ośrodków > sinα d d sinα d d sinα sinα Przy przejściu do innego ośrodka zmienia się prędkość fali i jej długość, nie zmienia się naomias częsoliwość fali Odbicie fali od granicy ośrodka α α
Ruch falowy 4-8 Odbicie i załamanie na granicy dwóch ośrodków α α sinα sinα n Prawo odbicia Wekor k! fali padającej, wekor k! fali odbiej i normalna do powierzchni granicznej w miejscu odbicia leżą w jednej płaszczyźnie, i ką padania jes równy kąowi odbicia α α Prawo załamania (Snelius a) Wekor k! fali padającej, wekor k! fali załamanej i normalna do powierzchni granicznej w miejscu załamania leżą w jednej płaszczyźnie, i sinα n sinα Jeżeli >, o jes aki graniczny ką padania α αgr ( sin α gr n ), π że ką załamania jes prosy α i zaburzenie rozchodzi się wzdłuż granicy między ośrodkami Dla kąów padania α > αgr fala nie przenika do drugiego ośrodka, ale ulega całkowiemu wewnęrznemu odbiciu na granicy
Ruch falowy 4-9 Prawa odbicia i załamania fal można wyprowadzić z bardzo ważnej zasady doyczącej ruchu falowego zasady Fermaa Zaburzenie (fala) rozchodzi się w ośrodku po akiej drodze, że czas przejścia między dwoma punkami jes eksremalny zwykle minimalny Linię, kóra jes w każdym punkcie syczna do wekora falowego k! (albo prosopadła do powierzchni falowej) nazywamy promieniem fali Można powiedzieć, że zaburzenie, rozchodzące się w ośrodku w posaci fali, przemieszcza się wzdłuż promieni ej fali W ośrodkach jednorodnych, gdzie cons, promienie fali są liniami prosymi Na granicy akich ośrodków promienie załamują się zmieniają kierunek W ośrodkach niejednorodnych prędkość fali nie jes sała (r ) a promienie przesają być liniami prosymi! W prawie wszyskich ośrodkach prędkość fali zależy od jej długości (częsoliwości) (k), a w ośrodkach anizoropowych (np w kryszałach) wysępuje eż zależność prędkości od kierunku rozchodzenia się! (k ) lub od kierunku polaryzacji fali (dla fal poprzecznych) W pierwszym przypadku mówimy o dyspersji fal fale o różnych długościach (częsoliwościach) biegną z różnymi prędkościami W ośrodkach anizoropowych wysępuje dodakowe zjawiska: dwójłomności, polaryzacji