Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,"

Transkrypt

1 Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, ale µ n (A) µ(a) dla pewnego zbioru A.. Wykaż, że: a) jeśli X n X p.n., to X n X; b) jeśli X n X według prawdopodobieństwa, to X n X; c) jeśli X n c, gdzie c jest stałą, to X n c według prawdopodobieństwa. 5. Zmienne losowe X n, X przyjmują tylko wartości całkowite. a) Wykaż, że X n X wtedy i tylko wtedy gdy P(X n = k) P(X = k) dla wszystkich liczb całkowitych k. b) Czy z istnienia granic lim n P(X n = k) dla k całkowitych wynika zbieżność X n wg rozkładu? 6. Czy teza punktu a) poprzedniego zadania się zmieni, jeśli zmienne X n przyjmują wartości wymierne? 7. Niech Bin(p, n) oznacza rozkład Bernoulliego o n próbach z prawdopodobieństwem sukcesu p, a Poiss(λ) - rozkład Poissona z parametrem λ. Wykaż, że jeśli p n n λ, to Bin(p n, n) Poiss(λ). 8. Podaj przykład ciągu dystrybuant F n, zbieżnego punktowo do funkcji, która nie jest dystrybuantą. 9. Podaj przykład ciągu zmiennych losowych X n, zbieżnego wg rozkładu, takiego, że odpowiadający mu ciąg dystrybuant nie zbiega punktowo do dystrybuanty rozkładu granicznego.. Wykaż, że zmienne losowe mające gęstości mogą zbiegać do stałej.. Niech X będzie niezdegenerowaną zmienną losową. Wykaż, że zmienne a n X + b n zbiegają według rozkładu do zmiennej ax + b wtedy i tylko wtedy gdy a n a i b n b.. Udowodnij, że N (a n, σ n) N (a, σ ) wtedy i tylko wtedy gdy a n a, σ n σ.

2 Zadania z Rachunku Prawdopodobieństwa II -. Niech g n, g oznaczają odpowiednio gęstości rozkładów prawdopodobieństwa µ n, µ na R n. Wykazać, że jeśli g n g p.w., to µ n µ, ale niekoniecznie na odwrót.. Wykaż, że rodzina rozkładów normalnych N (a α, σ α) jest ciasna wtedy i tylko wtedy gdy sup α a α, sup α σ α <.. Dana jest rodzina rozkładów a) wykładniczych {Exp(λ) : λ A}, A R +, b) jednostajnych {U(a, b) : a, b A, a < b}, A R. Jaki warunek musi spełniać zbiór A, aby ta rodzina była ciasna?. Wykazać, że jeśli dla wszystkich n, X n jest niezależne od Y n oraz X jest niezależne od Y, to (X n, Y n ) (X, Y ). 5. Udowodnij, że jeśli X n X, p > oraz sup n E X n p < to E X p <, ale niekoniecznie E X n p E X p. Jest to jednak prawdą gdy dla pewnego ε >, sup n E X n p+ε <.

3 Zadania z Rachunku Prawdopodobieństwa II -. Oblicz funkcje charakterystyczne rozkładów i) dyskretnych - dwupunktowego, geometrycznego, Bernoulliego, Poissona; ii) ciągłych - normalnego, jednostajnego, wykładniczego, dwustronnego wykładniczego.. Które z następujących funkcji są funkcjami charakterystycznymi: cos t, cos t, ( + eit ), +cos t, e? it. Przy pomocy funkcji charakterystycznych sprawdź, że jeśli ε n są niezależnymi symetrycznymi zmiennymi losowymi przyjumjącymi wartości ±, to zmienna losowa n n ε n ma rozkład jednostajny na przedziale [, ].. Niech X będzie zmienną losową taką, że P(X Z) =. Pokaż, że dla każdego n Z, P(X = n) = π π e itn ϕ X (t)dt. 5. Pokaż, że kombinacje wypukłe funkcji charakterystycznych są funkcjami charakterystycznymi. 6. Wiadomo, że ϕ jest funkcją charakterystyczną pewnej zmiennej losowej X. Czy funkcjami charakterystycznymi są : ϕ, Reϕ, ϕ, ϕ? 7. Udowodnij, że zmienna losowa X jest symetryczna wtedy i tylko wtedy gdy ϕ X (t) R dla wszystkich t.

4 Zadania z Rachunku Prawdopodobieństwa II -. Zmienne X, Y są niezależne, przy czym X i X +Y mają rozkłady normalne. Udowodnij, że zmienna Y ma także rozkład normalny lub jest stała p.n.. Zmienne X, Y, ε są niezależne, przy czym X, Y mają rozkład wykładniczy z parametrem λ oraz P(ε = ±) =. Wykaż, że zmienna X Y ma ten sam rozkład, co zmienna εx.. Udowodnij, że splot rozkładów Cauchy ego ma rozkład Cauchy ego.. Znajdź zmienne losowe X, Y takie, że ϕ X+Y = ϕ X ϕ Y oraz zmienne X, Y są zależne. 5. Korzystając z funkcji charakterystycznej oblicz EX k dla X N (, ). 6. Dla n zmienna X n ma rozkład geometryczny z parametrem p n (, ). Wykaż, że jeśli (a n ) n jest takim ciągiem liczb dodatnich, że a n, p n /a n λ >, to zmienne a n X n zbiegają słabo do rozkładu wykładniczego z parametrem λ. 7. Niech X będzie zmienną o rozkładzie jednostajnym U(, ). Rozstrzygnij, czy istnieje zmienna Y, niezależna od X, taka, że rozkłady zmiennych X + Y i Y są takie same. 8. Udowodnij, że jeśli ϕ X () istnieje to EX < 9. Podaj przykład zmiennych losowych X n takich, że ϕ Xn ϕ punktowo, ale ϕ nie jest funkcją charakterystyczna żadnego rozkładu na prostej.. Zmienna X ma funkcję charakterystyczną ϕ X (t) = e t α dla pewnego α (, ]. Co można powiedzieć o rozkładzie zmiennej ax + by, gdzie a, b R, a Y jest niezależną kopią X?

5 Zadania z Rachunku Prawdopodobieństwa II - 5. Na campusie uniwersyteckim są dwie restauracja po miejsc każda. Wiadomo, że codziennie osób będzie chciało zjeść obiad, a wyboru restauracji dokonują losowo i niezależnie. Jaka jest szansa, że w którejś restauracji zabraknie miejsc? Ile miejsc należy przygotować w każdej restauracji, by powyższe prawdopodobieństwo było mniejsze od,?. W pewnym stanie w wyborach prezydenckich głosuje 5. osób. Zakładając, że wyborcy głosują na każdego z dwu kandydatów z prawdopodobieństwem 5% jaka jest szansa, że różnica między kandydatami będzie mniejsza niż głosów?. Na podstawie losowej próby szacujemy procent dorosłych osób popierających pewną partię polityczną. Chcemy by błąd był mniejszy niż % z prawdopodobieństwem.95? Ile w tym celu musimy przepytać osób? Jak zmieni się odpowiedź, jeśli wiemy, że partię popiera nie więcej niż % wyborców?. Prawdopodobieństwo urodzenia chłopca wynosi,57. Jakie jest prawdopodobieństwo, że wśród noworodków liczba chłopców nie przewyższy liczby dziewcząt? 5. Rzucono razy kostką. Oszacuj prawdopodobieństwo, że suma wyrzuconych oczek będzie zawarta między a Dane są niezależne zmienne losowe X, X,..., o wspólnym rozkładzie z wartością oczekiwaną równą i dodatnią wariancją. Wyznacz w zależności od a, α R ( ) lim P X X n n > a. 7. Zmienne X, X,... są niezależne oraz P(X i = a) = P(X i = /a) = / dla pewnego a >. Wykaż, że zmienne Z n = (X X X n ) / n są zbieżne według rozkładu i znajdź rozkład graniczny. 8. Zmienne losowe X, X,... są niezależne, mają ten sam rozkład taki, że EX =, Var(X) =. Zbadaj zbieżność względem rozkładu ciągów n(x +..., X n ) U n = X , V n = X X n. X n X Xn n α 5

6 Zadania z Rachunku Prawdopodobieństwa II - 6. Zmienne X λ mają rozkład Poissona z parametrem λ. Wykaż, że X λ λ λ N (, ) według rozkładu gdy λ.. Udowodnij, że lim n k n e n k! =. k n. Udowodnij, że układ trójkątny X n,k = X k n, k n, gdzie X n, n =,,..., są niezależnymi zmiennymi losowymi o tym samym rozkładzie, spełnia warunek Lindeberga.. Zmienne X, X,... są niezależne przy czym P(X k = k) = P(X k = k) = /. Niech σ n = n k= Var(X k). Zbadaj zbieżność według rozkładu ciągu X X n σ n. 5. Powiemy, że układ trójkątny (X n,k ) spełnia warunek Lyapunowa, lim n σ +δ n k n k= E X n,k EX n,k +δ =. Wykazać, że warunek Lyapunowa implikuje warunek Lindeberga. 6. Niech X, X,... będą niezależnymi zmiennymi losowymi, takimi, że Wykazać, że ale Var(X n ). P(X n = ±) = ( n ), P(X n = ±n) = n. X X n n N (, ), 7. Niech X będzie całkowalną z kwadratem zmienną losową, taką, że X Y +Z, gdzie Y, Z - niezależne kopie X. Wykazać, że X ma rozkład N (, σ ). 8. Wyznacz funkcję charakterystyczną wektora losowego AX + b zakładając, że znamy funkcję charakterystyczną wektora X. 9. Podaj przykład dwu zmiennych X, Y o rozkładzie N (, ) takich, że Cov(X, Y ) =, ale X i Y nie są niezależne. 6

7 Zadania z Rachunku Prawdopodobieństwa II - 7. Zmienne τ i σ są momentami zatrzymania względem filtracji (F n ) n=. Wykaż, że τ σ, τ σ, τ + σ są momentami zatrzymania. Czy τ, τ + też są momentami zatrzymania?. Zmienne losowe (X n ) są adaptowalne względem filtracji (F n ) n=. Udowodnij, że następujące zmienne losowe są momentami zatrzymania dla dowolnego zbioru borelowskiego B: a) τ = inf{n : X n B} pierwsza wizyta w zbiorze B, b) τ k = inf{n > τ k : X n B}, k =,,... k-ta wizyta w zbiorze B.. Niech τ i σ będą momentami zatrzymania względem (F n ) n=. Wykaż, że a) jeśli τ t, to F τ = F t, b) jeśli τ < σ, to F τ F σ, c) A F τ wtedy i tylko wtedy gdy A F oraz A {τ = t} F t dla wszystkich t.. Zmienne τ i σ są momentami zatrzymania względem filtracji (F n ) n=. Udowodnij, że {τ < σ}, {τ σ}, {τ = σ} F τ F σ oraz F τ F σ = F τ σ. 5. Podaj przykład momentu zatrzymania τ, takiego, że σ(τ) F τ. 6. Zmienne X, X,... są niezależne oraz E X i < dla wszystkich i. Udowodnij, że M n = X X X n jest martyngałem względem F n = σ(x,..., X n ) wtedy i tylko wtedy gdy EX i = dla wszystkich i lub X = p.n.. 7. Niech X n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i średniej, F n = σ(x,..., X n ). Zdefiniujmy Z =, Z n = n X k X k k= Udowodnij, że (Z n, F n ) jest martyngałem. 8. Niech S n = X +X +...+X n oraz F n = σ(x,..., X n ), gdzie X, X,... są niezależnymi zmiennymi losowymi o jednakowym rozkładzie takim, że EXi <. Znajdź liczby a n, b n dla których Sn + a n S n + b n jest martyngałem względem F n. 9. Niech t R oraz X, X,... będą niezależnymi zmiennymi losowymi o rozkładzie normalnym N (, ). Przyjmijmy S n = X + X X n oraz F n = σ(x,..., X n ). Znajdź wszystkie ciągi (a n ) takie, że (e itsn+an, F n ) jest martyngałem. 7

8 Zadania z Rachunku Prawdopodobieństwa II - 8. Ciąg (X n ) jest martyngałem. Zbadaj, czy są pod- bądź nadmartyngałami ciągi: a) ( X n p ) n p ; b) (X n a) n ; c) (X n a) n ; d) (X n) n.. Niech (X n, F n ) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że jest on martyngałem wtedy i tylko wtedy gdy dla dowolnego ograniczonego momentu zatrzymania τ, EX τ = EX.. Zmienne X, X,... są niezależne oraz P(X i = ) = p = P(X i = ). Przyjmując S = S n = n i= X i znajdź wszystkie liczby rzeczywiste λ dla których λ Sn jest martyngałem względem filtracji generowanej przez (X n ).. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą symetryczną i niesymetryczną. 5. Niech X, X,... będą niezależnymi zmienymi losowymi takimi, że P (X i = ±) = /, S n = X + X X n oraz τ = inf{n : S n = }. Wykaż, że Eτ =. 6. Oblicz średni czas oczekiwania na ruinę któregoś z graczy w grze orła i reszkę monetą symetryczną i niesymetryczną. 7. X, X,... są niezależnymi zmiennymi losowymi o wspólnym rozkładzie takim, że EXi <. Udowodnij, że dla dowolnego momentu zatrzymania względem filtracji generowanej przez (X n ) takiego, że Eτ < zachodzi E(S τ τex ) = EτVar(X ). Czy wzór ten musi być prawdziwy bez założenia o skończoności Eτ? 8. Gracz A dysponuje nieskończonym kapitałem. Ile wynosi średni czas oczekiwania na wygranie zł. przez A w grze orła i reszkę a) monetą symetryczną b) monetę niesymetryczną. 9. Rzucamy kostką tak długo, aż otrzymamy wszystkie oczka. Znaleźć wartość średnią sumy wyrzuconych oczek. 8

9 Zadania z Rachunku Prawdopodobieństwa II - 9. Niech (ε n ) n będzie ciągiem niezależnych symetrycznych zmiennych losowych o wartościach ±. Wykaż, że Z n := e a(ε+...+εn) (na /). jest nadmartyngałem względem σ(ε,..., ε n ). Zbadaj zbieżność ciągu (Z n ) prawie na pewno i w L.. Niech X, X,... będą niezależne o rozkładzie jednostajnym na [, ]. Wykaż, że n M n = tworzą martyngał (względem filtracji generowanej przez X n ) zbieżny do prawie na pewno, ale nie w L.. Podaj przykład martyngału X n takiego, że X n p.n. oraz E X n.. Wykaż, że jeśli (X i ) i (Y i ) są jednostajnie całkowalne, to dla dowolnych a, b R, (ax i + by i ) jest jednostajnie całkowalny. 5. Znajdź jednostajnie całkowalny ciąg X n taki, że E sup n X n =. ϕ(x) 6. Niech ϕ : R + R + spełnia warunek lim x x =. Wykaż, że jeśli sup i Eϕ( X i ) < to (X i ) jest jednostajnie całkowalny. k= X k 9

10 Zadania z Rachunku Prawdopodobieństwa II -. Dwa jednorodne łańcuchy Markowa (X n ), (Y n ) z macierzą przejścia P są niezależne. Udowodnij, że Z n = (X n, Y n ) też jest łańcuchem Markowa i znajdź jego macierz przejścia.. Zmienne ε, ε,... są niezależne oraz P(ε i = ±) = /. Czy ciągi X n = ε n ε n+, Y n = ε n + ε n+ są łańcuchami Markowa?. (X n ) jest łańcuchem Markowa o wartościach w E. Czy dla dowolnej funkcji f : E E, (f(x n )) musi być łańcuchem Markowa?. Zmienne X, X,... są niezależne oraz P(X i = ) = P(X i = ) = p (, ), S n = X + X X n, M n = max(s, S,..., S n ). Które z ciągów S n, M n, M n S n są łańcuchami Markowa? Znajdź odpowiednie macierze przejścia. 5. Dany jest zbiór przeliczalny E i funkcje borelowskie ϕ n : E R E, n =,,... (przyjmujemy, że wszystkie podzbiory E są mierzalne). Zmienne losowe X o wartościach w E i U, U,... o wartościach rzeczywistych są niezależne. Udowodnij, że ciąg (X n ) n= zdefiniowany rekurencyjnie wzorem X n+ = ϕ n (X n, U n ) jest łańcuchem Markowa.

11 Zadania z Rachunku Prawdopodobieństwa II -. Dla łańcuchów Markowa o przestrzeni stanów {,,, } i poniższych macierzach przejścia znajdź wszystkie stany nieistotne i wszystkie zamknięte zbiory stanów. a) b). Wykaż, że łańcuch Markowa jest nieprzywiedlny wtedy i tylko wtedy gdy nie ma właściwego zamkniętego podzbioru stanów.. Wykaż, że jeśli y jest stanem chwilowym to n= p x,y(n) < dla wszystkich x, w szczególności lim n p x,y (n) =.. Wykaż, że skończony łańcuch Markowa ma przynajmniej jeden stan powracający. 5. Zbadaj powracalność symetrycznego błądzenia losowego w Z k. 6. Zbadaj okresowość łańcuchów o poniższych macierzach przejścia: a) b) 7. Jednorodny łańcuch Markowa o przestrzeni stanów {,,...} ma macierz przejścia (p n,m ) n,m taką, że p, =, p n,n+ = p n,n = p dla n =,..., gdzie p (, ). W zależności do parametru p wyznacz wszystkie rozkłady stacjonarne. 8. W dwu urnach znajduje się łącznie n kul. W każdej chwili wybieramy losowo kulę i przenosimy ją do innej urny. Znajdź rozkład stacjonarny liczby kul w pierwszej urnie. 9. W powiecie N. syn piekarza zostaje piekarzem z prawdopodobieństwem /, a syn niepiekarza z prawdopodobieństwem /. Jakie jest prawdopodobieństwo, że wnuk piekarza jest piekarzem? A potomek w n-tym pokoleniu? Jaki procent mężczyzn w N. jest piekarzem (zakładamy dla uproszczenia, że każdy mieszkaniec N. ma dokładnie jednego syna)?

12 Zadania z Rachunku Prawdopodobieństwa II -. Po wierzchołkach sześcianu porusza się w sposób losowy mucha - w każdym kroku z prawdopodobieństwem / przenosi się do jednego z sąsiednich wierzchołków. Oblicz prawdopodobieństwo, że mucha powróci do punktu wyjścia nie odwiedzając wcześniej przeciwległego wierzchołka oraz średnią liczbę kroków jakie zajmie jej powrót do punktu wyjścia.. Macierz przejścia łańcucha Markowa (X n ) n na przestrzeni S = {,,, } dana jest następująco:. a) Zakładając, że X = p.n. oblicz prawdopodobieństwo tego, że X n będzie w stanie przed stanem. b) Zakładając, że X = p.n. oblicz wartość oczekiwaną czasu dojścia do stanu. c) Wyznacz rozkład stacjonarny. d) Czy łańcuch jest okresowy? Czy jest nieprzywiedlny?. Rzucamy symetryczną monetą aż do momentu, gdy wyrzucimy pod rząd cztery orły. Oblicz wartość oczekiwaną liczby wykonanych rzutów.. Rzucamy kostką tak długo, aż pojawi się ciąg 6 lub 66. Jakie jest prawdopodobieństwo, że ciąg 6 pojawi się wcześniej? 5. Zmienne Y, Y, Y,... są niezależne i mają ten sam rozkład geometryczny z parametrem. Ciąg zmiennych X, X,... jest określony następująco: X p.n., a dla n, { jeśli Y n =, X n+ = X n Y n jeśli Y n. a) Wykaż, że (X n ) n jest nieprzywiedlnym łańcuchem Markowa. b) Czy ten łańcuch jest okresowy? c) Udowodnij, że wszystkie stany są powracające.

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej

Bardziej szczegółowo

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład

Bardziej szczegółowo

Seria 1. Zbieżność rozkładów

Seria 1. Zbieżność rozkładów Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa - 12

Zadania z Rachunku Prawdopodobieństwa - 12 Zadania z Rachunku Prawdopodobieństwa - 12 1. Udowodnij, że dla dowolnych punktów x n, x w przestrzeni metrycznej E δ xn δ x wtedy i tylko wtedy gdy x n x. 2. Wykaż, że 1 n n k=1 δ k/n λ, gdzie λ jest

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Zadania z Procesów Stochastycznych 1

Zadania z Procesów Stochastycznych 1 Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

07DRAP - Zmienne losowe: dyskretne i ciągłe

07DRAP - Zmienne losowe: dyskretne i ciągłe 07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa Dana jest przestrzeń probabilistyczna (Ω, F, P ), gdzie Ω jest zbiorem przeliczalnym

Zadania z Rachunku Prawdopodobieństwa Dana jest przestrzeń probabilistyczna (Ω, F, P ), gdzie Ω jest zbiorem przeliczalnym Zadania z Rachunku rawdopodobieństwa - 1 1. Dana jest przestrzeń probabilistyczna (Ω, F, ), gdzie Ω jest zbiorem przeliczalnym i F = 2 Ω. Udowodnij, że istnieją liczby p ω 0, ω Ω p ω = 1 takie, że (A)

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

P(U 1 > max{u 2,..., U 1000 } U 1 = s)dp U1 (s).

P(U 1 > max{u 2,..., U 1000 } U 1 = s)dp U1 (s). Kolokwium poszło gorzej, niż miałem nadzieję, a lepiej, niż się obawiałem. Maksymalny wynik to 74 punkty na 20), średnia to 55,6, zaś mediana to 50. Grupy były dość równe w jednej średnia to 54,5, w drugiej

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Zestaw 2. jej wartość oczekiwaną oraz wariancję. Znaleźć gęstości zmiennych losowych X, X 2, {

Zestaw 2. jej wartość oczekiwaną oraz wariancję. Znaleźć gęstości zmiennych losowych X, X 2, { Zestaw 1 P1.1. Czy, jeśli obraz funkcji jest przeliczalny, wystarczy, że przeciwobrazy zbiorów jednopunktowych są mierzalne, aby mieć pewność, że funkcja jest zmienną losową? P1.2. Sprawdzić, że jeśli

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - seria 1

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Zadania z Rachunku Prawdopodobieństwa I - seria 1 1. Dana jest przestrzeń probabilistyczna (Ω, F, P), gdzie Ω jest zbiorem przeliczalnym oraz F = 2 Ω. Udowodnij, że istnieją liczby p ω 0, takie że P(A)

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

Przykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych

Przykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Przykłady 6. Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa. Transformacje zmiennej losowej. Opracowanie:

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne 1. Dana jest przestrzeń probabilistyczna (Ω, F, P), gdzie Ω jest

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

ćwiczenia z rachunku prawdopodobieństwa

ćwiczenia z rachunku prawdopodobieństwa ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - seria 1

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Zadania z Rachunku Prawdopodobieństwa I - seria 1 1. Dana jest przestrzeń probabilistyczna (Ω, F, P), gdzie Ω jest zbiorem przeliczalnym oraz F = 2 Ω. Udowodnij, że istnieją liczby p ω 0, takie że P(A)

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne 1. Dana jest przestrzeń probabilistyczna (Ω, F, P), gdzie Ω jest

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz. Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Przykłady do zadania 3.1 :

Przykłady do zadania 3.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n. Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombinatorycznych 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? 2. Na szachownicy o wymiarach n n umieszczamy 8 nierozróżnialnych wież szachowych

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 08/9 Zarządzanie e-mail: www: konsultacje: rafal.kucharski@ue.katowice.pl http://web.ue.katowice.pl/rkucharski/ Piątki, 5:0-6:0,

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo