Jeśli m = const. to 0 P 1 P 2
|
|
- Stanisława Tomaszewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 1 PRAWA NEWTONA Prawo perwse. Każde cało trwa w spocnku lub ruchu jednostajn prostolnow, dopók sł nań dałające tego stanu ne eną. Prawo druge. Zana lośc ruchu (pędu) jest proporcjonalna wględe sł dałającej a kerunek prostej, wdłuż której ta sła dała. P V d V P d Jeśl = const. to dv a P Prawo trece Każdeu dałanu towars równe wprost precwne oddałwane, cl wajene dałane dwóch cał są awse równe skerowane precwne. cało 1 cało P 1 P P 1 = - P Prawo cwarte prawe superpocj Jeśl na punkt ateraln o ase dała jednoceśne klka sł, to każda nch dała neależne od poostałch, a wsstke rae dałają tak, jak jedna tlko sła równa wektorowej sue wektorów danch sł. d n V1 V... Vn P1 P... Pn P 1 P P P 1 P 1 P 1
2 Prawo pąte Każde dwa punkt ateralne prcągają sę wajene słą wprost proporcjonalną do locnu as ( 1, ) odwrotne proporcjonalne do kwadratu odległośc r ęd n. Kerunek sł leż na prostej łącącej te punkt. Prawo to nawa prawe grawtacj 1 k a 1 r P r k stała grawtacj P Dnacne równane różnckowe punktu ateralneg we współrędnch prostokątnch a a a n P 1 n P 1 n P 1 we współrędnch naturalnch V n an Pn 1 na oś noralną dv n a t P t na oś stcną n b P b 1 1 a na oś bnoralną
3 3 Ruch punktu pod dałane sł stałej co do wartośc kerunku Z drugego prawa Newtona P V V P r r Vt t 4 Ruch punktu pod dałane sł ależnej od casu 1 Równane a postać r dv 1 Pt, Pt całkując otra prędkość V w funkcj casu t dr 1 1 V V P t całkując otra wektor położena punktu r (t) r 1 t1t t 1 1 t dr Vt Pt, r r V t Pt r o
4 5 Ruch punktu pod dałane sł ależnej od prędkośc =const. 1 V P( V ) 1 t r r t,v 6 Ruch punktu pod dałane sł ależnej od połażena 1 = f(t) 7 Dnaka ruchu wględnego punktu ateralnego gd neruchoe XYZ to a b P b prśpesene w ruchu wględn a postać a a a a w b u c równana ruchu wględnego w układe rucho aw ab au ac Pb a b sła bewględna Pu au sła unosena Pc a c sła orolsa otra a w Pb Pu Pc Dnacne równana ruchu punktu ateralnego w rucho układe odnesena są take, jak gdb układ bł nercjaln pod warunke, że do sł bewględnej P b dałającej na punkt doda słę unosena P u słę orolsa P c.
5 8 Zasada pędu oentu pędu (krętu) loścą ruchu lub pędu nawa wektor H V V Pochodna pędu wględe casu punktu ateralnego równa sę sue sł dałającch na ten punkt dv P asadę achowana pędu Jeżel na punkt ateraln dała saorównoważon układ sł, to pęd jest wektore stał V const
6 9 Moent pędu (kret) K V k 9 r j Pochodna wględe casu krętu K punktu ateralnego wględe neruchoego beguna jest równa oentow wględe tegoż beguna wpadkowej sł dałającch na dk dan punkt ateraln. r P M dk dk M, M, dk M Jeżel oent wględe dowolnego beguna wpadkowej sł dałającch na punkt ateraln jest równ ero, to kręt punktu ateralnego wnacon wględe tegoż beguna dk jest stał M to stąd K const
7 11 Drgana swobodne netłuone Drgane ruch drgając punktu ateralnego jest to ruch w dostatecne ał otocenu położena swojej równowag stałej A B A, B położena krańcowe punktu ateralnego punkt położena równowag stałej Drgana swobodne drgana achodące pod dałane sł sprężstch Drgana swobodne netłuone drgana swobodne be dałana sł oporu (np. tarca, oporu powetra td.) Drga asa awesona na sprężne o stwnośc k. W położenu równowag na punkt ateraln dałają sł: Q sła cężkośc, S = k st reakcja sprężn wdłużene sprężn st = S /k = Q/k =g/k Pocątek układu współrędnch prjęto w położenu równowag punktu ateralnego. S Q S Q A- apltuda drga T A k V Okres drgań określa a cęstotlwość g st 1 T 1 k H
8 1 Drgana swobodne tłuone Prpadek gd na punkt ateraln dałają sł: S = k R = -cv proporcjonalna do wchlena opór którego wartość jest proporcjonaln do perwsej potęg prędkośc k c n k c Tr ożlwośc Po a. Prpadek tłuena nadkrtcnego (n> ) Wróżnk równana charakterstcnego jest węks od era, perwastk równana charakterstcnego są recwste oba ujene. Jest to prpadek slnego tłuena, ruch aperodcn. b. Prpadek tłuena krtcnego (n = ) Wróżnk równana charakterstcnego jest równ eru r n r1 nt e 1 t c. Prpadek tłuena podkrtcnego (n < ) Wróżnk równana charakterstcnego jest nejs od era, a wted dwa perwastk espolone. Ruch a charakter o apltude stale alejącej t 1 t t T = t t 1 T
9 13 Drgana wusone netłuone Jeśl poa słą cężkośc słą sprężstą na punkt ateraln dała okresowo enna w case sła wusająca, to powstające wted drgana nawa wuson. Na punkt ateraln S dała sła ewnętrna g P P 1 A Wkres A w funkcj / A P /( ) 1 3 /
10 14 DYNAMKA UKŁADU PUNKTÓW MATERALNYH Układ punktów ateralnch bór punktów ateralnch, w któr położene każdego punktu jest ależne od położena nnch punktów. Układ punktów swobodnch układ punktów ateralnch, którch ruch ne jest ograncon żadn węa. Układ punktów neswobodnch układ punktów ateralnch, którch ruch jest ograncon nałożon na te punkt węa. W układe punktów ateralnch wstępują sł wewnętrne ewnętrne. 3 P 3 S,1 S j S j S 1, S 1,4 S 4,1 1 4 P 4 P 1 Rs. 3 P sł ewnętrne S j sł wewnętrne S j = -S j n S j = -S j węc 1 jn j1 S j Podobne sua oentów sł wewnętrnch wględe dowolnego punktu wnos ero, gdż sł te para sę równoważą.
11 15 Zasad ruchu środka as, pędu krętu Środke as punktów ateralnch nawa punkt którego położene w prestren określa proeń wektor r 1 n r r 1 n gde n 1 r r 3 1 We współrędnch kartejańskch 1 n 1 n 1 n Zasad ruchu środka as, pędu krętu r a P gde P jest suą geoetrcną wsstkch sł n P 1 ewnętrnch dałającch na układ P, P, P Zasada ruchu środka as Środek as każdego układu punktów ateralnch porusa sę tak, jakb bła w n skupona cała asa układu jakb do tego punktu prłożone bł wsstke sł ewnętrne.
12 Zasadę achowana ruchu środka as Jeśl sua geoetrcna sł ewnętrnch dałającch na dan układ punktów ateralnch jest równa eru, to środek as poostaje w spocnku lub porusa sę ruche jednostajn prostolnow Zasada achowana pędu dh Jeżel P = to a stąd H V const 16 Pęd układu punktów ateralnch Pęde układu punktów ateralnch nawa wektorową suę pędów wsstkch punktów ateralnch tego układu n n H V H 1 1 n r 1 H V Pochodna pędu układu punktów ateralnch wględe casu jest równa sue geoetrcnej wsstkch sł ewnętrnch dałającch na punkt tego układu. Prrost pędu układu punktów ateralnch jest równ popędow t su geoetrcnej sł ewnętrnch H H H1 P r V V Zasada achowana pędu dh Jeżel P = to a stąd H V const t1
13 17 Moent pędu (kręt) Kręt układu punktów ateralnch wględe dowolnego punktu (beguna), jest to wektor równ sue geoetrcnej krętów wsstkch punktów ateralnch układu wględe beguna (rs.9). n r 1 V K K V K K n K r n V 1 1 Wartośc rutów wektora krętu K na ose są K K K n K 1 n K 1 n K 1 Pochodna wględe casu krętu punktów ateralnch wględe dowolnego punktu równa jest sue geoetrcnej oentów sł ewnętrnch, jeżel punkte jest punkt nerucho lub środek as układu.
14 18 Zasada d Aleberta j S j S j P a B B - sła bewładnośc d Aleberta Zasada d Aleberta- sua sł ewnętrnch wewnętrnch ora sł bewładnośc danego układu punktów ateralnch, jak równeż sua oentów tch sł wględe punktu stałego lub środka as równają sę eru. a P n 1 n 1 n 1 n 1 n a P a 1 n a a P P 1 n a a P P 1 n a a P P 1 19 Moent bewładnośc dewacj Moent bewładnośc wględe punktu d A r d r Moent bewładnośc wględe os l l h d V P 9 l h V d
15 Moent bewładnośc wględe płascn h d h d V 9 d A r d d d Moent bewładnośc wględe punktu r d d Moent dewacj lub oent bocena d ; d ; d
16 Twerdene Stenera Moent bewładnośc wględe os równoległch d = + d = + Moent bewładnośc wględe os twerdene Stenera d Twerdene Stenera odnos sę równeż do oentów dewacj
17 1 Praca sł A r dr B r 1 P t W t1 P P P Praca sł prłożonch do cała stwnego Praca sł ewnętrnch w ruchu postępow dr a dr a a = a j = a j j P dr = dr j = dr r j r P j Praca eleentarna sł P dw P dr P dr Praca sł ewnętrnch na presunęcu skońcon AB W dw P dr AB Praca sł ewnętrnch w ruchu obrotow W M d 1 M n Praca sł wewnętrnch W S dr 1 1 j
18 3 Pojęce oc Moc sł praca wkonana pre słę w cągu jednostk casu Moc średna w predale casu t W N śr t Wartość oc chwlowej sł W dw N l t t Moc sł jest to locn skalarn wektora sł P wektora prędkośc V punktu jej prłożena. W prostokątn układe N PV PV PV N PV cos( P,V ) PV cos P V
19 4 Energa knetcna Energa knetcna układu punktów ateralnch jest równa sue energ knetcnej wsstkch punktów ateralnch n n 1 E E V 1 1 dżul (J) jednostka energ knetcnej 1J 1kg 1N s Energa knetcna w ruchu postępow Wsstke punkt ają tę saą prędkość V =V +1 = V 1 n 1 E V V gde n 1 1 Energa knetcna cała stwnego w ruchu obrotow l V = r l V r r d d Energa knetcna eleentu cała d 1 E V d Energa knetcna całego cała E V d r d r d 1 l gde l r d oent bewładnośc wględe os l
20 Energa knetcna w ruchu płask Wkład 15 49dn Ruch płask uskan, traktując ten ruch jako łożon ruchu postępowego unosena prędkoścą środka as V u = V ruchu obrotowego wględnego dookoła prostej prechodącej pre środek as, prostopadłej do płascn kerującej. V w r V r A V r V r A V Rs. 48 V w = w, V = V u = u, V = w +V E V d V u Vw d (V Vw ) d 1 1 V d V V d V w d (a) w V w r, Vw Vw r sn9 r (b) VVwd V Vwd (c) dr d poneważ V w d d rd 1 rd położene środka as wględe środka as równa sę ero. Podstawając (b) (c) do (a) otruje 1 1 E V l gde l r d (61) (61) jest nawane Twerdene Koenga
21 Dnaka ruchu obrotowego cała stwnego Zasada pędu krętu w ruchu obrotow, β, kąt ęd osą obrotu a osa,, (rs.49) l β Rs.49 l Składowe prędkośc prśpesena kątowego są cos (a) cos (b) Pęd ogóln H jego pochodna wględe casu H H V r (c) H a r V a a (d) P t n 5dn r d r Rs.5
22 W ogóln prpadku składowe V a wnaca e worów j k V r V jv kv (e) a t a n j k r a ja ka (f) j k V a ja ka (g) V V V W prpadku gd oś pokrwa sę osą obrotu l wted =, =, = =, =, = (h) ora V = -, V =, V = t a t = -, a t =, a t = () n a n = -, a n = -, a n = Pr t ałożenu składowe pędu ogólnego H wnosą t n t n 51dn H = V = - H = V = H = V = (j)
23 Natoast składowe pochodnej wględe casu pędu ogólnego H są równe H a P H a P (6) H a P gde: P, P, P składowe su geoetrcnej wsstkch sł ewnętrnch dałającch na cało Równana (6) opsują asadę pędu w ruchu obrotow Ogóln oent pędu (kręt) wględe punktu (rs.49) (rs.5) leżącego na os obrotu l wnos j k K r Vd d K jk kk V V V gde K V V d K V V d (63) K V V d Z woru (e) wnka V, V, V (k) Podstawając (k) do (63) wkonując całkowane a 5dn K K K (64)
24 Gd osą obrotu jest oś, wówcas wor (64) 53dn ają postać K = -, K = -, K = (64) Ab otrać równana dnacne dla cała stwnego o nerucho jedn punkce, opre sę na twerdenu dotcąc krętu wględe neruchoego beguna. Oberając jako begun środek ruchu kulstego dk a M gde M sua oentów sł ewnętrnch (J. Msak Mechanka Techncna to strona 18). Reakcje dnacne łożsk os obrotu Prkład Punkt ateraln o ase obraca sę wokół os AB (rs.51) prędkoścą kątową = const. Rowąane l R B ω B h R B R A A R A Rs.51 Sua rutów sł na ose R R R R A B Sua oentów wględe os R B l RBl po rowąanu tch równań otruje RB RB l l A B
25 RA RA l l 54dn Uwag dotcące wważena kół h R A b h h c R B a h Sua rutów sł na oś ponową R A R B - h + h = stąd R A = R B sua oentów wględe punktu M ha hb R c B R A R B h c b a dla a = b R A = R B =
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł
Przykład 3.1. Projektowanie przekroju zginanego
Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł
ALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
cz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Bła stwna c. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-, pok. skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/ 8-- Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka Śodek as/ śodek cężkośc
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
x od położenia równowagi
RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Algebra z geometrią 2012/2013
Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
3. Dynamika ruchu postępowego
. Dnaka ruchu postępowego Zasad dnak Newtona Zasad dnak Newtona opsują zagadnena echank klascznej. Zasad te pozwalają w szczególnośc znaleźć wszstke paraetr opsujące ruch cała, take jak położene, prędkość
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8
Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji
Precesja koła rowerowego
Precesja koła rowerowego L L L L g L t M M F L t F O y [( x ( x s r S y s Twerene Stenera y r s s ] x Z efncj ukłau śroka asy: y s s - oent bewłanośc wgęe os równoegłej o os prechoącej pre śroek cężkośc
Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
Tomasz Grębski. Liczby zespolone
Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Algebra WYKŁAD 2 ALGEBRA 1
Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynaiki Maszyn Politechniki Łódzkiej MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Praca wprowadza oenty bezwładności ciała
Macierze hamiltonianu kp
Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI
Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene
KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA
ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia
LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwicenia 3 Ruch precesjn giroskopu Cel ćwicenia Obserwacja jawiska precesji regularnej. Badanie ależności prędkości kątowej precesji od momentu sił
J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki
Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT
ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
7.5.1. Ruch bryły swobodnej
751 Ruch brł swobone Swobona brła stwna ma w prestren seść stopn swobo o oreślena e ruchu potreba seścu równań ruchu Ruch brł możem robć na ruch śroa mas wwołan pre ałane wetora głównego sł ewnętrnch obrót
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Wykład FIZYKA I. 9. Ruch drgający swobodny
Wkład FIZYK I 9. Ruch drgając swobodn Katedra Optki i Fotoniki Wdział Podstawowch Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizka.html RUCH DRGJĄCY Drganie (ruch drgając)
Wykład FIZYKA I. 9. Ruch drgający swobodny. Dr hab. inż. Władysław Artur Woźniak
Dr hab. inż. Władsław rtur Woźniak Wkład FIZYK I 9. Ruch drgając swobodn Dr hab. inż. Władsław rtur Woźniak Insttut Fizki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizka.html Dr hab.
Nara -Japonia. Yokohama, Japan, September 2014
Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu
ZASADY ZACHOWANIA W FIZYCE
ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA
Powierzchnie stopnia drugiego
Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej
Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą
Terodynaika 16-1 16 Terodynaika Założenia teorii kinetycno oekuarnej Ga doskonały ode ideanego układu bardo wieu cąstecek, które: i ają asę w najprostsy prypadku wsystkie taką saą, ii nie ają objętości
GAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
Wyznaczanie środka ciężkości i obliczanie momentów bezwładności bryły sztywnej 3
Wynaane środka ężkoś oblane oentów bewładnoś bryły stywnej Podstawowe ależnoś Współrędne środka ężkoś bryły stywnej wględe płasyn układu współrędnyh xy są następująe: płasyna Πy płasyna Πx płasyna Πxy
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Drgania układu o wielu stopniu swobody
Drgana układu welu stpnu swbd Drgana własne Zasada d laberta Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc.
MATURA PRÓBNA 2 KLASA I LO
IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp
Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
14. Zasady zachowania dla punktu i układu punktów materialnych: pędu, krętu, energii, zasada d Alemberta.
4. Zasad achowaa da puktu układu puktów ateach: pędu, kętu, eeg, asada d ebeta. υ p = pęd (ość uchu puktu ateaego υ F d ( υ = F pochoda wgęde casu pędu ówa jest se dałającej a da pukt v v t2 ( υ2 υ = t
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły stywnej: Znkane suy sł pryłożonych suy oentów sł pryłożonych. J Precesja koła rowerowego Onacena na poprench wykłaach g M t M t Cęstość precesj: t gr Newykłe własnośc żyroskopów
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
Fizyka dla Informatyki Stosowanej
ka dla Infoatk Stosowanej Jacek Golak Seest ow 8/9 Wkład n 4 Na popedn wkłade oważlś wąk ęd pędkoścą pspesene w dwóch układach odnesena Wó na tansfoację pędkośc! v v' v ' t ana pędkośc na skutek uchu obotowego
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.
Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie
Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie
dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE
.. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm
Blok 7: Zasada zachowania energii mechanicznej. Zderzenia
Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
Mechanika ogólna II Kinematyka i dynamika
Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna
N I P U L O Y Prstrnn nalia inmatcna Wsółrędn absolutn (artańsi) aniulator łasi r r r r r r acir rotaci Wrsor r r r r Prstałcni dnorodn q wtor wsółrędnch absolutnch KINEYK NIPULOÓW PZESZENNYCH 5 Wsółrędn
EPR. W -1/2 =-1/2 gµ B B
Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość