M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna
|
|
- Ryszard Wójtowicz
- 6 lat temu
- Przeglądów:
Transkrypt
1 N I P U L O Y Prstrnn nalia inmatcna
2 Wsółrędn absolutn (artańsi) aniulator łasi r r
3 r r r r acir rotaci Wrsor
4 r r r r Prstałcni dnorodn q wtor wsółrędnch absolutnch
5 KINEYK NIPULOÓW PZESZENNYCH 5
6 Wsółrędn absolutn - uład rstrnn 6
7 Wsółrędn absolutn - uład rstrnn {} {} r r 7
8 Wsółrędn absolutn - uład rstrnn r r
9 Wsółrędn absolutn - uład rstrnn J,,,,, {}= {}, ous irunow
10 Wsółrędn absolutn - uład rstrnn,,, J, {}= {},, ous irunow
11 Wsółrędn absolutn - uład rstrnn,,,, J {}= {},, ous irunow
12 Wsółrędn absolutn - uład rstrnn I transonowani tożsam odwracanim
13 Wsółrędn absolutn - uład rstrnn I
14 Wsółrędn absolutn - uład rstrnn a b b a
15 Wsółrędn absolutn - uład rstrnn 9 lmntów macir rotaci 6 równań tlo są nialżn
16 ransformaca homognicna (dnorodna) r r r r
17 ransformaca homognicna (dnorodna) r r
18 acir transformaci odwrotn {} {}
19 {} {} ) ( acir transformaci odwrotn Suan Dan, :, :
20 Ilustraca transformaci odwrotn
21 ransformac lmntarn translaca uładu {} wględm {} {} {} : transl
22 ransformac lmntarn obrót uładu {} wględm {} woół osi {} Z ) (9 ) (9, : o o rot (9 o -q ) = q (9 o +q ) = - q Z, : rot,,,
23 ransformac lmntarn obrót uładu {} wględm {} woół osi {} rot :,
24 , : rot, : rot ransformac lmntarn obrót uładu {} wględm {} woół osi {}
25 Sładani rmiscń
26 Sładani rmiscń transl : rot :, rot :,
27 Sładani rmiscń
28 Sładani rmiscń Wrfiaca
29 Sładani rmiscń B B Sładani transformaci ni st rminn. Usani orawn transformaci łożon wmaga achowania odowidni olności transformaci lmntarnch ora doonwania ich w olnch ośrdnich uładach wsółrędnch
30 ransformaca wdług Dnavita-Hartnbrga Dnavit J., Hartnbrg.S.: Kinmatic Notation for Lowr Pairs chanisms Basd on atrics. ransactions of SE, Journal of lid chanics, Vol., 955
31 ransformaca wdług Dnavita-Hartnbrga
32 ransformaca wdług Dnavita-Hartnbrga Para clindrcna C
33 ransformaca wdług Dnavita-Hartnbrga Para sfrcna S Par clindrcn, sfrcn można aws astąić r łańcuch łożon cłonów ołąconch tlo arami i
34 ransformaca wdług Dnavita-Hartnbrga W uładach awiraącch włącni ar obrotow i ostęow można oscgólnm cłonom risać loaln uład wsółrędnch iruąc się dwima asadami: osi oscgólnch uładów są aws orowadon wdłuż osi ar wnacaącch odowidnio irun rsuwu (dla ar ) lub oś obrotu (dla ar ), osi oscgólnch uładów są aws orowadon w tai sosób ab bł rostoadł do osi + uładu olngo
35 ransformaca wdług Dnavita-Hartnbrga transf ( ) transl : a rot : transl : d rot :
36 ransformaca wdług Dnavita-Hartnbrga całowita transformaca będi alżna od tlo ctrch aramtrów aangażowanch w oln transformac lmntarn: odlgłość a omięd osiami ora, ąt wichrowania osi ora, odlgłość d ocątu uładu {} od osi miron wdłuż osi, ąt q orintaci osi wględm obrócon wględm osi PEY D-H
37 ransformaca wdług Dnavita-Hartnbrga rot d transl rot a transl transf : : : : ) ( d a
38 ransformaca wdług Dnavita-Hartnbrga rot d transl rot a transl transf : : : : ) ( d d a d a a
39 ransformaca wdług Dnavita-Hartnbrga a d ZIENN
40 ransformaca wdług Dnavita-Hartnbrga a d ZIENN
41 aniulator l a l c
42 aniulator q l a q l c q
43 aniulator q l a q l c q a d a d d
44 aniulator a =, =, =q, d = l a q q l c q a d q
45 aniulator a =, = 7 o, =q, d = q l a q l c q a d 7 q O
46 aniulator q a = l a, = o, =q, d = l a q l c q a q d l a q
47 q q q q q q q q q q l a q q aniulator l a l c q q q
48 l a S C C S S S C C S C l a S C C S S S C S S S S C C S l a C C S C S C S C C S S C C C C C S C S S C S S S C C C b c l l r q q q r r r r r ),, ( i i i i q s q c aniulator
49 h = d
50
51 uch w wsółrędnch DH Prędości
52 Para obrotowa ZIENN
53 Para ostęowa d ZIENN d
54 w Para obrotowa Zminn: ω, q a d d
55 d d a const? dt d Położni ocątu uładu {} w uładi {} Prędość ocątu uładu {} w uładi {} {}
56 Pochodna wtora dnostowgo: d dt ω d dt d dt ω ω ω
57 ω ω Prędość ocątu uładu {} w uładi {}
58 ω Ilocn wtorow b b b a a a a b b a b a a b b a a b b a c c b a
59 q q,, ω ω ω ω w w w Prędość ątowa w cłonu st sumą wtorową rędości cłonu w uładi odstaw w i rędości wględn w, w ar obrotow Prędość wględna w, st mirona wdłuż osi a więc wrażni w uładi odstaw wmaga transformaci uładu {} do odstaw {} a omocą macir rotaci Prędość ątowa w cłonu w uładi {} q ω ω w
60 ω d v d q Zminn: Para ostęowa d d v d Położni ocątu uładu {} w uładi {} Prędość ocątu uładu {} w uładi {} {}
61 const const a q d q d d a dt d ω Dla ar, inac niż dla, wtor oisuąc ocę {} w {} st minn, a go ochodna wnosi: v d q
62 Dla uroscnia aisu worstam rlacę q q q v d q
63 q ω Prędość ocątu uładu {} w uładi {} Prędość ątowa w cłonu w uładi {} ω ω ω, v d q
64 Prędość untu na cłoni {} {} r r r ω r
3. Kinematyka podstawowe pojęcia i wielkości
3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 07/08 dr iż. Sebastia
Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej
Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
Wykres linii ciśnień i linii energii (wykres Ancony)
Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
WYKŁAD DLA KIERUNKU MECHANIKA I BUDOWA MASZYN
WYKŁAD DLA KIERUNKU MECHANIKA I BUDOWA MASZYN . Analiza struturalna. Więzy bierne i ich eliminaca 3. Analiza inematyczna 4. Analiza inematyczna c.d. metody wetorowe 5. Metody analityczne inematyi 6. Charaterystya
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
W siła działająca na bryłę zredukowana do środka masy ( = 0
Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
Laboratorium Podstaw Metrologii
WOCŁAW Wrocław, dnia Laboratorium odstaw Metroogii Ćwiczenie o i ierune studiów... Grupa (dzień tygodnia i godzina rozpoczęcia zajęć) Imię i nazwiso Imię i nazwiso Imię i nazwiso rzetwornii Badanie właściwości
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze
Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...
Siły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze
Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste
Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie
Ćwiczenie nr 1: Wahadło fizyczne
Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel
Koła rowerowe malują fraktale
Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
MECHANIZMY ROBOTÓW M A N I P U L A T O R Y
MECHANIZMY ROBOTÓW M A N I P U L A T O R Y sterowanie Manipulator mechaniczny uład przeznaczony do realizaci nietórych funci ręi ludzie. Manus (łacina) - ręa uład mechaniczny Karel Cape R.U.R. (Roboty
MECHANIKA II. Dynamika układu punktów materialnych
MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Z poprzedniego wykładu:
Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Koła rowerowe kreślą fraktale
26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina
WYZNACZANIE MOMENTU HAMUJĄCEGO I KINETYCZNEGO WSPÓŁCZYNNIKA TARCIA DLA HAMULCA KLOCKOWEGO I TAŚMOWEGO
.. Cel ćwicenia Ćwicenie WYZNACZANIE MOMENTU HAMUĄCEGO I KINETYCZNEGO WSPÓŁCZYNNIKA TARCIA DLA HAMULCA KLOCKOWEGO I TAŚMOWEGO Celem ćwicenia jest analia wpływu onstrucji hamulca na jego moment hamujący
MES dla stacjonarnego przepływu ciepła
ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Algebra liniowa z geometrią analityczną
WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai
Pręty silnie zakrzywione 1
Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
ROZDZIAŁ V. STATYKA PRZESTRZENNYCH UKŁADÓW RAMOWYCH
ROZDZIAŁ V. STATYKA PRZESTRZENNYCH UKŁADÓW RAMOWYCH Prstrnna konstrukcja ramowa jst najogólnijsm tpm konstrukcji prętowch. Elmntami ram prstrnnj można modlować wsstki omówionch dotchcas konstrukcji (krat
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnia Gdańsa Wydział Eletrotechnii i Autoatyi Katedra Inżynierii Systeów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systey ciągłe budowa odeli enoenologicznych z praw zachowania Materiały poocnicze
Redukcja dowolnego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci
Redukcja dowolnego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Twierdzenie o redukcji: ażdy układ wektorów równoważny jest układowi złożonemu ze sumy o początku w dowolnym punkcie
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W DOBORZE FUNKCJI NAPĘDOWYCH ŻURAWI NA PODATNYM PODŁOŻU
acta chanica t autoatica vol. no. () ZASOSOWAI SZUCZYCH SICI UROOWYCH W DOBORZ FUKCJI APĘDOWYCH ŻURAWI A PODAYM PODŁOŻU Andr URBAŚ * Mar SZCZOKA * * Katdra Inforatyi Stosowan Wydiał Zarądania i Inforatyi
Krzywe stożkowe Lekcja VII: Hiperbola
Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie
Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego
Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
1. RACHUNEK WEKTOROWY
1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Z poprzedniego wykładu:
Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne ZADANIE D Nazwa zadania: Prędość chwilowa uli Zaproponuj metodę pomiaru prędości chwilowej stalowej uli poruszającej się po zadanym torze. Wyorzystaj
ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU
Mirosław Tomera Aademia Morsa w Gdyni Wydział Eletryczny Katedra Automatyi Orętowej ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU W pracy przedstawiona została implementacja sieci neuronowej
KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI
KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE
http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html
O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016
Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś
Termodynamiczny model działania broni z odprowadzeniem gazów prochowych w okresie napędzania suwadła
BIULETYN AT VOL. LVIII, NR 3, 9 Termodynamiczny model działania broni z odrowadzeniem gazów rochowych w oresie naędzania suwadła GRZEGORZ LEŚNIK, ZBIGNIE SURMA, STANISŁA TORECKI, RYSZARD OŹNIAK ojsowa
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł
FARMALL A STAGE IIIB
FARMALL 55 65 75 A STAGE IIIB Models line up 3 modele FARMALL 55 A FARMALL 65 A FARMALL 75 A Silnik Moc znamionowa [KM] Przekładnia ManualDrive Dopuszczalna masa całkowita Wersja bez kabiny ROPS Wersja
Naczepy niskopodwoziowe. 2-osiowa 3-osiowa 3-osiowa light 4-osiowa 5-osiowa 6-osiowa 7-osiowa 8-osiowa 8 (2+6)-osiowa 10 (2+8)-osiowa
ST Naczepy niskopodwoziowe 2-osiowa 3-osiowa 3-osiowa light 4-osiowa 5-osiowa 6-osiowa 7-osiowa 8-osiowa 8 (2+6)-osiowa 10 (2+8)-osiowa Seria ST Naczepy niskopodwoziowe serii ST ofewane w opcjach od 2
GAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
Zadania do rozdziału 5
Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie
Wiąi gussowsi sclony Sron 9 Wiąi gussowsi. rdmio opisu: pol rochodi się w irunu osi, ogrnicon do oolicy osi opycnj: D y x ol lrycn możn rołożyć n słdow ( i poprcną: ). odobni dywrgncję możn rołożyć n sm
Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same
Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2
www.toyota-forklifts.eu Elektryczny wózek widłowy 1.0-1.5 ton
www.toyota-forklifts.eu Elektryczny wózek widłowy 1.0-1.5 ton Elektryczny wózek widłowy 1.0 t Specyfikacja wózka 7FBEST10 1.1 Producent Toyota 1.2 Model 7FBEST10 1.3 Napęd Elektryczny 1.4 Typ sterowania
Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły
Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Powierzchnie stopnia drugiego
Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny