Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania"

Transkrypt

1 Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x <... < x = b x k [x k x k ]- pukt pośredi k-go podziłu P. f będzie ogriczo [ b]. Wówczs cłkę ozczoą Riem z fukcji f przedzile [ b] defiiujemy wzorem f(x = lim f(x k x k δ(p k= o ile po prwej stroie zku rówości gric jest włściw orz ie zleży od sposobu podziłów P przedziłu [ b] i od wyboru puktów pośredich. Uwg. Jeśli f jest cłkowl to wystrczy wziąć jede ciąg podziłów i jede ciąg puktów pośredich. Zdie. Korzystjąc z defiicji orz z fktu że fukcje ciągłe są cłkowle obliczyć pode cłki ozczoe: b x c x d x e cos(x si(x podpowiedź: si( si( = (+ si( si( si( g x 3 podpowiedź: ( ( + i 3 = i= h 3 x podpowiedź: i = i= ( + ( + 6 i e x e h użyć rówości: lim = h h

2 j użyć rówości z poprzediego podpuktu. 3x Zdie. Korzystjąc z defiicji cłki ozczoej obliczyć gricę: lim 3 b lim ( c lim d lim e lim lim l ( ( ( ( + ( +... ( + ( g lim si α h lim + si α ( i lim e + e e ( j lim ( α si ( + + ( ( + ( k lim ( + + ( ( l lim ( ( +. Defiicj. Niech f będzie fukcją cłkowlą [ b]. Jest więc rówież cłkowl podprzedzile (dl kżdego x [ b] wtedy fukcję zywą fukcją górej gricy cłkowi fukcji f przedzile [ b] defiiujemy wzorem f(z dz. Twierdzeie (Podstwowe twierdzeie rchuku cłkowego. Niech f będzie fukcją zmieej rzeczywistej cłkowlą przedzile [ b]. Wówczs odwzorowie F : [ b] R de wzorem F (x = w przedzile [ b]. Jeżeli f jest ciągł w pewym pukcie x [ b] to fukcj F jest różiczkowl w x orz F (x = f(x. Zdie 3. Obliczyć pochodą fukcji F jeżeli: F (x = b F (x = + t dt + t dt c F (x = d F (x = 3x 3 x si(x Zdie 4. Niech f C([ b] R. Uzsdić że si(t t e t dt [ u dt f(t dt jest ciągłe e F (x = F (x = ] f(t dt du = cos(x e x rctg(t dt sg(t dt. (x uf(u du.

3 Zdie 5. Niech f C([ ] R. Zleźć f( jeżeli: f(t dt = x ( + x c 3 f(t dt = x e f(x t dt = x 4 + 4x 3 b f(t dt = x ( + x d (+x f(t dt = x f(x t dt = x ( + x. Zdie 6. Obliczyć gricę: lim b lim x+h c lim h h x x ( + x m x + x du u + u + x d lim x x 3 x e lim x x 6 t dt t 4 + t dt t 6 +. Twierdzeie (Newto-Leibiz. Niech f : I R będzie fukcją cłkowlą orz F : I R będzie jej fukcją pierwotą. Wówczs dl dowolych b I zchodzi f = F (b F (. Zdie 7. Korzystjąc z twierdzei Newto-Leibiz obliczyć pode cłki ozczoe: b x( + x 3 ( x 3 x + x 4 h i 4 (x + 3 x + x o p si(x 3 + si (x (rcsi(x x c e x l(x j e l(x x q l(x d (si(x + cos (x k 3 x x + r sg(x x e e x cos(x l si (x cos(x s 3 x [x] x 3 x 8 + m x e x t [l(x] g 3x 3x + x cos(x u si(x + 3

4 Twierdzeie 3 (o wrtości średiej. Jeśli f C([ b] R to istieje pukt c [ b] tki że f(c = f. b f(c zywmy wrtością średią fukcji f. Zdie 8. Obliczyć wrtości średie podych fukcji wskzych przedziłch: f(x = x [ ] b f(x = cos(x [ +x ] c f(x = x si(x [ ]. Twierdzeie 4. Jeśli fukcj f jest cłkowl orz jest ieprzyst to jest przyst to jest okresow o okresie T to +T f(x = f(x = f(x f(x = T f(x. Zdie 9. Korzystjąc z włsości cłek z fukcji przystych ieprzystych lub okresowych obliczyć cłki: e x si(x c 4 4 x + cos(x e x rctg(x. b x 5 3 x d 4 3 si(x + cos (x Defiicj 3. Mówimy że f jest loklie cłkowl przedzile I jeśli jest cłkowl kżdym domkiętym podzbiorze I. Defiicj 4 (cłk iewłściw. Niech f będzie loklie cłkowl [ b. Możemy zdefiiowć c f(x = lim f(x c b o ile istieje gric skończo. Jeżeli b = to przyjmujemy b =. Cłk f(x zywmy cłką iewłściwą. Jeśli skończo gric po prwej stroie rówi ie istieje to mówimy że cłk f(x jest rozbież lub f ie jest cłkowl [ b. Alogiczie defiiujemy cłkę z fukcji loklie cłkowlej ( b]. 4

5 Defiicj 5. Jeśli f jest loklie cłkowl ( b to f(x = s f(x + f(x s gdzie < s < b o ile istieją obie cłki z prwej stroy rówi (skończoe. Zdie. Zbdć zbieżość cłek iewłściwych korzystjąc z defiicji. Obliczyć ich wrtość jeśli są zbieże: (x + d x + 4 g 4 6 x b c x x si(x e e x (rctg(x + x h x + 5 x 3. Twierdzeie 5 (Kryterium porówwcze zbieżości cłek. Jeżeli f(x g(x dl x [ orz jeśli cłk jeśli cłk g(x jest zbież to cłk f(x jest rozbież to cłk f(x jest zbież. g(x jest rozbież. Twierdzeie 6 (Kryterium ilorzowe zbieżości cłek. Nich f g będą określoe i dodtie (lub obie ujeme [ orz iech f(x lim = k gdzie < k <. Wówczs x ifty g(x cłk f(x jest zbież wtedy i tylko wtedy gdy cłk Prwdziwe są rówież logicze twierdzei dl cłek h(x. g(x jest zbież. Zdie. Korzystjąc z jedego z powyższych kryteriów zbdć zbieżość cłek: 3 x 3 + e x 4 b e x + x 3 e x x(e x c d 4 x x + e x si (x g h e x e x x x x + cos(x 5

6 Stwierdzeie. Niech f g C([ b] R orz iech x [b] f(x g(x. Wówczs pole trpezu krzywoliiowego ogriczoego fukcjmi f i g orz prostymi x = i x = b wyrż się wzorem P = (g(x f(x. Zdie. Obliczyć pol obszrów ogriczoych podymi krzywymi: yx 4 = y = y = 6 b y = x x x + y = c y = x y = x = d y = x y = x 6 y = y = 4 e x = y 3 y x = y = y = x y = 4 x g y = x + y = 3 x h y = x y 3 = x i y = l(x y = x x = e j y = si(x y = cos(x x = x = k y = xe x y =. Twierdzeie 7 (Długość krzywej. Niech f C ([ b] R. Wtedy długość krzywej {(x f(x : x [ b]} wyrż się wzorem L = Zdie 3. Obliczyć długość krzywej: + [f (x]. y = x x + rccsi( x b y = l(si(x 3 x 3 c y = x 3 x d y = e x l( x l(3 e y = x5 + 6x 3 x y = l(cos(x x 4. Stwierdzeie. Niech f C([ b] R + orz iech T ozcz trpez krzywoliiowy ogriczoy wykresem fukcji f osią OX orz prostymi x = x = b. Wtedy objętość bryły powstłej w wyiku obrotu trpezu krzywoliiowego wokół osi OX wyrż się wzorem wokół osi OY wyrż się wzorem V = f (x V = xf(x. 6

7 Zdie 4. Obliczyć objętość bryły powstłej przez obrót zdej krzywej wokół wskzej osi: OX y = ctg(x 4 x b OX y = rcsi(x x c OX y = x x d OX y = x 3 x e OX y = x5 + 6x 3 x OX y = l(cos(x x 4 g OY y = x 3 x h OY y = 5 x x 4. Zdie 5. Obliczyć objętość bryły powstłej przez obrót dookoł osi OX obszru ogriczoego liimi: y = x + y = 3x b y = si(x y = si(x x 3 3. Stwierdzeie 3. Niech f C([ b] R +. Wtedy pole powierzchi bryły powstłej w wyiku obrotu wykresu fukcji f wokół osi OX wyrż się wzorem P = f(x + [f (x]. Jeśli podto to pole powierzchi bryły powstłej w wyiku obrotu wykresu fukcji f wokół osi OY wyrż się wzorem P = x + [f (x]. Zdie 6. Obliczyć pole powierzchi bryły powstłej przez obrót zdej krzywej wokół wskzej osi: OX y = 4 x x b OX y = x( x 3 x 3 c OY y = x 9 x d OY y = x x 3. Bibliogrfi:. J. Bś S. Wędrychowicz Zbiór zdń z lizy mtemtyczej WNT Wrszw.. M. Gewert Z. Skoczyls Aliz mtemtycz. Defiicje twierdzei wzory GiS Wrocłw. 3. M. Gewert Z. Skoczyls Aliz mtemtycz. Przykłdy i zdi GiS Wrocłw. 4. K. Jkowsk T. Jkowski Zbiór zdń z mtemtyki PG Gdńsk W. Krysicki L. Włodrski Aliz mtemtycz w zdich część PWN Wrszw W. Kryszewski Wykłd lizy mtemtyczej cz. - Fukcje jedej zmieej UMK Toruń F. Lej Rchuek różiczkowy i cłkowy ze wstępem do rówń różiczkowych PWN Wrszw

Analiza Matematyczna

Analiza Matematyczna Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził

Bardziej szczegółowo

Wykład 8: Całka oznanczona

Wykład 8: Całka oznanczona Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Ciągi i szeregi funkcyjne

Ciągi i szeregi funkcyjne Mteriły do ćwiczeń Aliz Mtemtycz II 7/8 Mri Frotczk, Ludwik Kczmrek, Ktrzy Klimczk, Mri Michlsk, Bet Osińsk-Ulrych, Tomsz Rodk, Adm Różycki, Grzegorz Sklski, Stisłw Spodziej Teori pod przed ćwiczeimi pochodzi

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Istytut Mtemtyki Politechiki Pozńskiej Cłki ozczoe. Defiicj cłki ozczoej Niech d będzie fukcj f ciągł w przedzile [, b]. Przedził [, b] podziey podprzedziłów puktmi = x < x < x

Bardziej szczegółowo

Literatura do ćwiczeń: Program zajęć: dr Krzysztof Żyjewski Informatyka; rok I, I o.inż. 17 listopada 2015

Literatura do ćwiczeń: Program zajęć: dr Krzysztof Żyjewski Informatyka; rok I, I o.inż. 17 listopada 2015 dr Krzysztof Żyjewski Iformtyk; rok I, I o.iż. 17 listopd 015 Kotkt: e-mil: krzysztof.zyjewski@uwm.edu.pl kosultcje: po 18 listopd 7.55-8.55, pok. A0/19 (ie termiy możliwe po uprzedim kotkcie milowym)

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

Powtórka dotychczasowego materiału.

Powtórka dotychczasowego materiału. Powtórk dotychczsowego mteriłu. Zdi do smodzielego rozwiązi. N ćwiczeich w środę 7.6.7 grupy 4 leży wskzć zdi, które sprwiły jwięcej problemów. 43. W kżdym z zdń 43.-43.5 podj wzór fukcję różiczkowlą f

Bardziej szczegółowo

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej. 5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż

Bardziej szczegółowo

Ciągi liczbowe podstawowe definicje i własności

Ciągi liczbowe podstawowe definicje i własności Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym

Bardziej szczegółowo

1.1 Pochodna funkcji w punkcie

1.1 Pochodna funkcji w punkcie Pochod fukcji w pukcie BLOK I RACHUNEK RÓŻNICZKOWY I CAŁKOWY Zkłdmy, że fukcj f jest określo w przedzile, ) orz, że, ), jest liczą, dl której + ), ) Liczę zywmy przyrostem rgumetu w pukcie, tomist różicę

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). Ciągi i szeregi - Lucj owlski CIĄGI LICZBOWE N,,,... zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej). Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Zadania i rozwiązania prac domowych z Analizy Matematycznej 1.2 z grupy pana Ryszarda Kopieckiego, semestr letni 2011/2012.

Zadania i rozwiązania prac domowych z Analizy Matematycznej 1.2 z grupy pana Ryszarda Kopieckiego, semestr letni 2011/2012. Zdi i rozwiązi prc domowych z Alizy Mtemtyczej. z grupy p Ryszrd Kopieckiego, semestr leti / Ntli Skowsk . seri UWAGA: wykresów oczywiście rysowć ie trzeb. Co więcej, wykres ie jest dowodem żdego stwierdzei.

Bardziej szczegółowo

log lim =log a e, a x 1 =loga, lim a (1+x) ,oiletagranicaistnieje. ,...,jeżeli a n a,tociągśrednicharytmetycznychb n a(odwrotnienie!

log lim =log a e, a x 1 =loga, lim a (1+x) ,oiletagranicaistnieje. ,...,jeżeli a n a,tociągśrednicharytmetycznychb n a(odwrotnienie! Aliz mtemtycz I- www.mimek.pl, Autor: Krzyś Kulewski, pi@zodic.mimuw.edu.pl 1 Ciągi 1. Kżdy ciąg zbieży jest ogriczoy.. Twierdzeie Bolzo-Weierstrss. Kżdy ciąg ogriczoy zwier podciąg zbieży. 3.Gricgóridol

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem

Bardziej szczegółowo

EAIiIB- Informatyka - Wykład 1- dr Adam Ćmiel zbiór liczb wymiernych

EAIiIB- Informatyka - Wykład 1- dr Adam Ćmiel zbiór liczb wymiernych EAIiIB- Iortyk - Wykłd - dr Ad Ćiel ciel@.gh.edu.pl dr Ad Ćiel (A3-A4 p.3, tel. 3-7, ciel@gh.edu.pl ; http://hoe.gh.edu.pl/~ciel/) Podręcziki Gewert M, Skoczyls Z. Aliz tetycz i. Deiicje twierdzei i wzory,

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr II. Wykłady

Materiały dydaktyczne. Matematyka. Semestr II. Wykłady Projekt współfisowy ze środków Uii Europejskiej w rmch Europejskiego Fuduszu Społeczego Mteriły dydktycze Mtemtyk Semestr II Wykłdy Projekt Rozwój i promocj kieruków techiczych w Akdemii Morskiej w Szczeciie

Bardziej szczegółowo

Analiza matematyczna ISIM I

Analiza matematyczna ISIM I Aliz mtemtycz ISIM I Ryszrd Szwrc Spis treści Ciągi liczbowe. Zbieżość ciągów......................... 3. Liczb e.............................. 0 Szeregi liczbowe 3. Łączość i przemieość w sumie ieskończoej.........

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

Szeregi o wyrazach dowolnych znaków, dwumian Newtona

Szeregi o wyrazach dowolnych znaków, dwumian Newtona Poprwi lem 9 czerwc 206 r, godz 20:0 Twierdzeie 5 kryterium Abel Dirichlet Niech be dzie ieros cym ci giem liczb dodtich D Jeśli 0 i ci g sum cze ściowych szeregu b jest ogriczoy, to szereg b jest zbieży

Bardziej szczegółowo

Analiza Matematyczna 2 Szeregi liczbowe i funkcyjne

Analiza Matematyczna 2 Szeregi liczbowe i funkcyjne Aliz Mtemtycz 2 Szeregi liczbowe i fukcyje Wydził Mtemtyki wykłdowc T. Dowrowicz 5 kwieti 2017 Wykłdy III i IV SZEREGI LICZBOWE Obrzowo mówiąc, szeregiem, zywmy ciąg, w którym zmist przeików stwimy zki

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag. Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

W tym wykładzie zapoznamy się z podstawowymi metodami przybliżonego obliczania całek oznaczonych funkcji jednej zmiennej, tj.

W tym wykładzie zapoznamy się z podstawowymi metodami przybliżonego obliczania całek oznaczonych funkcji jednej zmiennej, tj. WYKŁAD 3 CAŁKOWANIE NUMERYCZNE Motywcj Wiele spotykych w prktyce cłek ie może być obliczo lityczie lub ich ścisłe obliczeie jest brdzo prcochłoe. Z drugiej stroy, brdzo często wystrczy zć jedyie przybliżoą

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2).

ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2). ZADANIA NA POCZA TEK Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 4 3 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4

Bardziej szczegółowo

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb. Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce

Bardziej szczegółowo

Matematyka wybrane zagadnienia. Lista nr 4

Matematyka wybrane zagadnienia. Lista nr 4 Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest

Bardziej szczegółowo

Analiza Matematyczna. Całka Riemanna

Analiza Matematyczna. Całka Riemanna Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11 Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór

Bardziej szczegółowo

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Rchuek prwdopodobieństw MA5 Wydził Elektroiki, rok kd. 20/2, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 7: Zmiee losowe dwuwymirowe. Rozkłdy łącze, brzegowe. Niezleżość zmieych losowych. Momety. Współczyik

Bardziej szczegółowo

Obrazowo, zbiór jest ograniczony, gdy wszystkie jego elementy są położone między dwoma punktami osi liczbowej.

Obrazowo, zbiór jest ograniczony, gdy wszystkie jego elementy są położone między dwoma punktami osi liczbowej. ZBIORY I FUNKCJE LICZBOWE ZBIORY LICZB { 3 } { ± ± } N ziór licz turlych Z ziór licz cłkowitych p Q : p Z q N ziór licz wymierych q R ziór licz rzeczywistych ZBIORY OGRANICZONE Def ziór ogriczoy z dołu

Bardziej szczegółowo

Ciągi i szeregi liczbowe

Ciągi i szeregi liczbowe Ciągi i szeregi liczbowe Defiicj. Jeżeli kżdej liczbie turlej przyporządkow zostł jkś liczb rzeczywist, to mówimy, że zostł określoy ciąg liczbowy (ieskończoy). Formlie ozcz to, że ciąg liczbowy jest fukcją

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Jan Nawrocki. MATEMATYKA cz. 2. Analiza matematyczna I

Jan Nawrocki. MATEMATYKA cz. 2. Analiza matematyczna I J Nwrocki MATEMATYKA cz Aliz mtemtycz I Politechik Wrszwsk Politechik Wrszwsk Wydził Smochodów i Mszy Roboczych Kieruek "Edukcj techiczo iformtycz" -54 Wrszw, ul Nrbutt 84, tel () 849 4 7, () 4 8 48 ipbmvrsimrpwedupl/spi/,

Bardziej szczegółowo

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb. Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

nazywamy n -tym wyrazem ciągu ( f n

nazywamy n -tym wyrazem ciągu ( f n Rk II Temt 7 SZEREGI FUNKCYJNE SZEREG POTĘGOWY SZEREG TAYLORA Ciąg ukcyjy Szeregi ukcyje Zbieżść jedstj Szereg ptęgwy Prmień zbieżści szeregu ptęgweg Szereg Tylr Ciąg ukcyjy Niech U zcz iepusty pdzbiór

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 7.

Matematyka dla biologów Zajęcia nr 7. Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:

Bardziej szczegółowo

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury. Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

Analiza Matematyczna część 3

Analiza Matematyczna część 3 [wersj z 5 III 7] Aliz Mtemtycz część 3 Kospekt wykłdu dl studetów fizyki/iformtyki Akdemi Świętokrzysk 6/7 Wojciech Broiowski Różiczkowlość Pochod fukcji jedej zmieej Pochod f : (, b) R w pukcie (, b)

Bardziej szczegółowo

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,

Bardziej szczegółowo

1 Rachunek zdań 3. 2 Funkcje liczbowe 6

1 Rachunek zdań 3. 2 Funkcje liczbowe 6 Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P. Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

Zagadnienie Sturma-Liouville a. Definicja : Zagadnieniem Sturma-Liouville a nazywamy równanie różniczkowe postaci

Zagadnienie Sturma-Liouville a. Definicja : Zagadnieniem Sturma-Liouville a nazywamy równanie różniczkowe postaci Zgdieie Sturm-Liouville Defiicj : Zgdieiem Sturm-Liouville zywmy rówie różiczkowe postci p x y x + q x + λ r x y x = 0, x,, λ R gdzie p x, p x, q x, r x są ciągłe, orz x, p x 0 r(x) 0 z wrukmi rzegowymi.

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x.

x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x. Zadaie.. Obliczyć graice x 2 + 2x 3 (a) x x x2 + x2 + 25 5 (d) x 0. Graica i ciągłość fukcji x 2 5x + 6 (b) x x 2 x 6 4x (e) x 0si 2x (g) x 0 cos x x 2 (h) x 8 Zadaie.2. Obliczyć graice (a) (d) (g) x (x3

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1 METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Rozdział 1. Ciągi liczbowe, granica ciągu

Rozdział 1. Ciągi liczbowe, granica ciągu Rozdził. Ciągi liczbowe, gric ciągu. Rodzje i włsości ciągów liczbowych W życiu codzieym często moż spotkć się z ciągmi: ciąg smochodów ulicy (pierwszy, drugi, trzeci ), ciąg ludzi w kolejce (zerowy chwilę

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -

Bardziej szczegółowo

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe. Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

3, leŝącym poniŝej punktu P. Wartości funkcji f są

3, leŝącym poniŝej punktu P. Wartości funkcji f są Odpowiedzi i schemty oceii Arkusz Zdi zmkięte Numer zdi Poprw odpowiedź Wskzówki do rozwiązi D ( 0 x )( x + b) x 0 + b 0 x xb x + ( 0 b) x + b 0 x + ( 0 b) x + b 0 0x + 0 0 WyrŜei po obu stroch rówości

Bardziej szczegółowo

Analiza Matematyczna Wykªad

Analiza Matematyczna Wykªad Aliz Mtemtycz Wykªd Spis tre±ci 1 Wst p 1 2 Ci gi liczbowe 2 3 Gric ci gu 4 4 Gric fukcji 6 5 Asymptoty fukcji 9 6 Ci gªo± fukcji 10 7 Pochod fukcji 11 8 Ekstrem fukcji 13 9 Cªk ieozczo 16 10 Cªk ozczo

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej. Zakres podstawowy i rozszerzony Dorot oczek, roli Wej MATeMAtyk 2 Szczegółowe wymgi edukcyje z mtemtyki w klsie drugiej Zkres podstwowy i rozszerzoy Ozczei: wymgi koiecze; wymgi podstwowe; R wymgi rozszerzjące; D wymgi dopełijące; W

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo