Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.
|
|
- Iwona Rogowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys. 6.), z. pól oszrów ogrczoych osą OX wykresem fukcj f( przy. Wprowdźmy sępujące ermy: Defcj 6. Podzłem P domkęego przedzłu <, > zywmy kżdą dekompozycję ego przedzłu podprzedzły posc <, >, <, >, <, >,..., < -, >, gdze Długość przedzłu < -, >, ozczć ędzemy symolem, z.: = - -. Nech ozcz jwększą z lcz. Weźmy pod uwgę cąg podzłów P ego smego przedzłu <, >. Zuwżmy, że m mejsz jes wrość, z. m krósze są przedzły dzelące <, > ym ych przedzłów mus yć węcej, z. ym wększe jes. Defcj 6. Cąg P zywmy ormlym cągem podzłów, jeśl lm Uwórzmy erz sumę S, zwą sumą Rem od zwsk emeckego memyk G. F. B. Rem (86 866), kóry zsosowł ją po rz perwszy. Rys. 6. Trpez krzywolowy. S f ( w ), gdze w jes dowolą lczą z przedzłu < -, >. Rys. 6. Przylżee pol rpezu krzywolowego sumą pól prosokąów sr.
2 S jes węc sumą pól prosokąów o podswch < -, > wysokoścch f(c ). (rys. 6.). Jes o węc przylżee pol zwrego mędzy krzywą f( osą OX w przedzle <, >. Przylżee o jes ym dokłdejsze m mejszą wrość m. Defcj cłk ozczoej. Defcj 6. Jeśl cąg S przy jes zeży do ej smej grcy przy kżdym ormlym cągu podzłów P ezleże od wyoru puków c, o fukcję f( zywmy fukcją cłkowlą w przedzle <, > grcę cągu S zywmy cłką ozczoą fukcj f( w przedzle <, > ozczmy symolem: z. lm Zwązek medzy cłką ozczoą eozczoą: f ( c ) Jeżel przez F( ozczymy fukcję perwoą fukcj f( cągłej w przedzle <, >, z. jeżel F ( = f( lu F( C, o: F( ) F( ), przy czym różc po prwej sroe e zleży od słej cłkow C. Włsośc cłk ozczoej. c. Jeżel c, o (.. ( ( g( ) f f g(. k k c. Cłkowe przez podswee. Jeżel g( jes fukcją cągłą w przedzle <, > f( jes fukcją cągłą w przedzle <g(), g()>, o: gdze u = g(. f ( g( ) g'( g( ) g( ) f ( u) du sr.
3 5. Cłkowe przez częśc. Jeżel f( g( są fukcjm mjącym cągłą pochodą, o: g( g'( g( f '( Przykłd 6. Olczyć. s cos,. s. sr.
4 Zsosow cłk ozczoej Olcze pól fgur ogrczoych krzywym. Z erprecj geomeryczej cłk ozczoej (rys. 6., sum Rem, rys. 6.) wyk, że jeśl fukcj f( przyjmuje w przedzle <, > wrośc dode, o pole P oszru ogrczoego wykresem ej fukcj, prosym =, = orz osą OX jes rówe P. Jeśl w przedzle <, > fukcj f( przyjmuje wrośc ujeme, o dl ego przedzłu sum Rem jes ujem. sąd wyk, że pole odpowedego oszru wyrż sę wzorem P Przykłd 6. Rys. 6. Przylżee pol rpezu krzywolowego sumą pól prosokąów. Przypdek fukcj ujemej. Olczyć pole oszru ogrczoego łukem krzywej f( = + -, odckem os OX orz prosym = - =. Rozwąze. Njperw musmy szkcowć w ukłdze współrzędych oszr, kórego pole mmy olczyć. Chodz przede wszyskm o podzelee przedzłu cłkow podprzedzły, w kórych fukcj podcłkow m sły zk. W ym celu rozwązujemy rówe + - =, czyl ( + ) =. Orzymujemy sępujące perwsk: = -, = =. Przedzł (-, ) rozjmy podprzedzły (-, >, (, > (, ) dmy zk fukcj w kżdym z ych podprzedzłów. Ieresujący s oszr przedswoy jes rysuku 6.. Z rysuku ego wyk, że eresujące s pole P jes sumą rzech pól: P = P + P + P, gdze. P ( 8 8 Rys. 6.. sr.
5 P ( 5 ( P Zem P Cłk ewłścwe Doychczs, mówąc o cłce ozczoej zkłdlśmy, ekedy mlcząco, że:. przedzł, jes skończoy, z. - < < <.. f( jes w przedzle, fukcją cągłą. Nesey e zwsze złoże e są spełoe. 6. Cłk ozczoe w przedzle eskończoym. Złóżmy, że fukcj f( jes cągł w eskończoym przedzle, ) orz, że dl kżdej k lczy k, ) seje (rys. 6.5). Rys. 6.5 Defcj 6. Jeżel fukcj f( jes cągł w eskończoym przedzle, ), o lm. Jeżel powyższ grc seje, o mówmy, że cłk ewłścw jes zeż że jej wrość jes rów ej grcy. Jeżel oms powyższ grc e seje, o mówmy, że cłk ewłścw jes rozeż. Podoe defujemy cłkę ewłścwą dl eskończoego przedzłu cłkow (-,. sr. 5
6 Defcj 6.5 Jeżel fukcj f( jes cągł w eskończoym przedzle (-,, o lm. Trzecm przypdkem cłk ewłścwej przedzle eskończoym jes cłk ozczo przedzle cłkow (-, ). Defcj 6.6 Jeżel fukcj f( jes cągł dl wszyskch jes dowolą lczą rzeczywsą, o Przykłd 6. Sprwdzć, czy sępujące cłk są zeże: ), ( ) ). Przykłd 6. Olczyć pole oszru leżącego pod wykresem krzywej y = e, pod osą OX, lewo od prosej =. Przykłd 6.5 Olczyć pole.. Nszkcowć wykres fukcj y zerpreowć cłkę jko Rys. 6.6 sr. 6
7 6.. Cłk z fukcj eogrczoych. Rozwżmy erz przypdek kedy przedzł cłkow, jes skończoy, le fukcj podcłkow m w ym przedzle puky ecągłośc o ke, w kórych wykres ej fukcj m sympoy poowe. Rozwżmy przedzł prwosroe owry Rys. 6., ). Złóżmy, że w przedzle ym fukcj f( jes cągł lm (rys. 6. ()). Poewż fukcj f( jes cągł w cłym przedzle (e zwerjącym puku ), dl kżdej wrośc kej że < <, seje cłk. Jeżel dodkowo seje grc lm, o mówmy, że grc jes rów cłce ewłścwej. Alogcze określmy cłkę ewłścwą, gdy ecągłość fukcj podcłkowej wysępuje w lewym końcu przedzłu cłkow (rys. 6. ()). Defcj 6.. Jeśl f( jes fukcją cągłą przedzle, ) ecągłą dl =, o lm.. Jeśl f( jes fukcją cągłą przedzle (, ecągłą dl =, o lm. Podoe jk poprzedo, jeśl grce zpse w defcj 6. seją o mówmy, że cłk ewłścw jes zeż, oms jeśl e seją, o mówmy że jes rozeż. sr.
8 Defcj 6.8 Jeśl fukcj f( m puk ecągłośc dl = c leżący wewąrz owrego przedzłu (, ) poz ym pukem jes cągł dl wszyskch (, ), o c c jeśl oe cłk po prwej sroe rówośc seją. Powyższą defcję moż sosowć kże dl fukcj, kór w przedzle cłkow m węcej ż jede puk ecągłośc. Przykłd 6.6 Olcz cłk:.. Rozwąze.. Fukcj podcłkow jes eokreślo dl = defcję 6., wzór. lm lm (sosujemy podswee = k, = -dk ). lm, zem możemy zsosowć lm. Fukcj podcłkow jes eokreślo dl =. Podo zsosowć defcję 6., wzór. lm lml l ( lm lm l ) Cłk jes węc rozeż... Możemy węc sr. 8
9 Przykłd 6. Olcz cłk:.. Rozwąze.., / Pukem ecągłośc fukcj podcłkowej jes =. Podo lm. Możemy węc zsosowć defcję lm, orz lm lm lm Cłk Oczywśce. e musmy już lczyć. jes rozeż. Pukem ecągłośc fukcj podcłkowej jes = -. Podo lm /, zem / / / /. lm / / / lm orz / lm lm / / Zem / / lm / 6 lm lm / 6 9 / sr. 9
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie
R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.
WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),
Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n
lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
Analiza Matematyczna
Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził
MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.
CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
Szeregi trygonometryczne Fouriera. sin(
Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś
3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.
WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
Analiza matematyczna i algebra liniowa Całka oznaczona
Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.
Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Metody obliczeniowe. wykład nr 4. róŝniczkowanie przybliŝone całkowanie numeryczne
Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Metody olczeowe wykłd r 4 róŝczkowe przylŝoe cłkowe umerycze Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Perwsz pochod ukc Ozcze: - ukc określo
Matematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
CAŁKA OZNACZONA JAKO SUMA SZEREGU
CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.
Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = =
Pomr jego dokłdość. Kżdy pomr dje m wyk z pewą ylko dokłdoścą, węc obcążoy je epewoścą pomrową (błędem pomrowym). Pomry fzycze dzelmy : bezpośrede pośrede. Pomrm bezpośredm zywmy ke, kórych wrość lczbową
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Powtórka dotychczasowego materiału.
Powtórk dotychczsowego mteriłu. Zdi do smodzielego rozwiązi. N ćwiczeich w środę 7.6.7 grupy 4 leży wskzć zdi, które sprwiły jwięcej problemów. 43. W kżdym z zdń 43.-43.5 podj wzór fukcję różiczkowlą f
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
I. APROKSYMACJA I INTERPOLACJA FUNKCJI JEDNEJ ZMIENNEJ
Oprcowł: mgr Słwomr Mlewsk Smodzely Zkłd Metod Komputerowych w Mechce L6, WL, PK APROKSYMACJA NTERPOLACJA FUNKCJ JEDNEJ ZMENNEJ Ogóle zgdee proksymcj moż opsć stępująco: De są pukty leżące ądź to do wykresu
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Istytut Mtemtyki Politechiki Pozńskiej Cłki ozczoe. Defiicj cłki ozczoej Niech d będzie fukcj f ciągł w przedzile [, b]. Przedził [, b] podziey podprzedziłów puktmi = x < x < x
Struna nieograniczona
Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei
... MATHCAD - PRACA 1/A
Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.
Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Fizyka 1- Mechanika. Wykład 2 12.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyk 1- Mechnik Wykłd 1.X.17 Zygmun Szefliński Środowiskowe Lbororium Ciężkich Jonów szef@fuw.edu.pl hp://www.fuw.edu.pl/~szef/ Pojęci podswowe Punk merilny Ciło, kórego rozmiry możn w dnym zgdnieniu
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Funkcje jednej zmiennej - ćwiczenia 1. Narysuj relacje. Które z nich są funkcjami?
Fukcj jdj zmij - ćwiczi. Nrysuj rlcj. Kór z ich są fukcjmi? A = (.y) R : y = A = (.y) R : y = A = (.y) R : y = A = (.y) R : y = - A 5 = (.y) R : y = ( + A 6 = (.y) R : y +. Zlźć dzidzię fukcji okrśloj
Matematyka dla biologów Zajęcia nr 7.
Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
VIII. RÓŻNICZKOWANIE NUMERYCZNE
VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +
RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM
ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości
Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne
r: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe wyłd r różczowe przylżoe cłowe umerycze r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc Perwsz pocod uc dec: ' lm Ozcze:
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy
5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja
Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski
Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
VI. Rachunek całkowy. 1. Całka nieoznaczona
VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
O JEDNOZNACZNOŚCI ROZWIĄZAŃ RÓWNAŃ POLA ELEKTROMAGNETYCZNEGO W OBSZARZE ANIZOTROPOWYM I NIESTACJONARNYM
ELEKTRYK 4 Zeszy 4 3 Rok LX Drsz PŁEK Polechk Śląsk w Glwcch O JEDNOZNCZNOŚCI ROZWIĄZŃ RÓWNŃ POL ELEKTROMGNETYCZNEGO W OBZRZE NIZOTROPOWYM I NIETCJONRNYM reszczee. rykł prezeje rozwż eoreycze, doyczące
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0)
Kolokwium z mmki 7.. Tm A godz.. Imię i nzwisko Nr indksu Zdni Wznczć cłkę d cos sin Wznczć ką unkcję pirwoną do unkcji cos sin kór przchodzi przz punk Odp. c cos cos F Zdni Nrsowć wrswic unkcji ln odpowidjąc
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Ciągi liczbowe podstawowe definicje i własności
Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym
- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO
MECHANIKA Mechnk klsycn Knemyk Dynmk Kneyk Syk - Dł fyk jmujący sę ruchem, równowgą oływnem cł. - Oper sę n rech sch ynmk Newon b ruchy cł mkroskopowych (mechnk newonowsk). - Nuk o ruchu be uwglęnen wywołujących
Rozszerzenie znaczenia symbolu całki Riemanna
Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Lista 6. Kamil Matuszewski 26 listopada 2015
Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego
5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell
- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
Zasada indukcji matematycznej. Dowody indukcyjne.
Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń
CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.
CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
Rachunek różniczkowy funkcji wielu zmiennych
Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.
Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr.........
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI prowdząc(y)... grup... podgrup... zespół... seestr... roku kdeckego... studet(k)... SPRAWOZDANIE Z PRACY LABORATORYJNEJ r......... pory wykoo
Ciągi i szeregi funkcyjne
Mteriły do ćwiczeń Aliz Mtemtycz II 7/8 Mri Frotczk, Ludwik Kczmrek, Ktrzy Klimczk, Mri Michlsk, Bet Osińsk-Ulrych, Tomsz Rodk, Adm Różycki, Grzegorz Sklski, Stisłw Spodziej Teori pod przed ćwiczeimi pochodzi
Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Rachunek różniczkowy funkcji wielu zmiennych
EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
1.1 Pochodna funkcji w punkcie
Pochod fukcji w pukcie BLOK I RACHUNEK RÓŻNICZKOWY I CAŁKOWY Zkłdmy, że fukcj f jest określo w przedzile, ) orz, że, ), jest liczą, dl której + ), ) Liczę zywmy przyrostem rgumetu w pukcie, tomist różicę
Collegium Novum Akademia Maturalna
Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Całka krzywoliniowa nieskierowana (całka krzywoliniowa funkcji skalarnej)
WYŁAD : CAŁI RZYWOLINIOWE Nech - krwa w R : gde [ α β ] ora C [ α β]. Zaem dowol puk krwej moża predsawć w posac j k krwa adaa jes pre wekor parameracj r : r j k. Decja Jeśl krwa e ma puków welokroch.