Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
|
|
- Sebastian Czesław Sobczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki: ) ( )( ) b) +5 c) ( +) d) e) ( ctg ) f) ( e big) g) e b h) e + 3 cos +sin i) sin + 3 cos cos i) ( ) k) l) 5 ( ) m) 3+ + Zdnie. Oblicz f(), jeśli: ) f() = { ; ; ; b) f() = ; ; c) f() = d) f() = e e) f() = sin f) f() = g) f() = sin h) f() = Zdnie 3. Dobierjąc odpowiednie podstwienie oblicz cłki: ) sin 4 b) 3 cos 5 c) (8 5) 5 d) 3 e) f) g) ( ) 3 h) 3 i) ( +3) 6 j) k) e l) 6 m) e 4 n) e 3 o) e sin cos p) 4 e 5 + q) e r) e s) e 3 t) e +e u) e 3 +5e 3 v) ln 5 w) ln ) ln ln (ln ) y) 5 ln +7 z) 3 8 b) sin 5 cos bc) tg cd) tg de) 3 tg+3 cos cos ef) + ctg fg) cos sin gh) cos (ln ) hi) cos 3 ij) sin ( ) jk) cos sin kl) lm) + 5+ mn) 3 no) op) (+) +6 5 pq) 5 6 qr) cos +4 sin rs) st) 3 tu) uv)
2 vw) rctg w) + (+ 3 ) y) rctg + yz) tg +tg 4 cos α) sin cos sin +b cos β) 6 rcsin γ) rccos δ) 3 4 ln ε) ctg ln (sin ) Zdnie 4. Korzystjąc ze wzoru n cłkownie przez części oblicz cłki: ) sin b) cos c) e d) 3 e e) e cos f) sin g) sin 5 h) ln i) ln j) ln k) ln l) ln m) ( + 3) sin 3 n) ( + 3) ln o) cos p) 3 q) rctg r) rccos s) rctg y) ln u) cos (ln ) v) w) e rcsin ) rccos + y) rcsin z) ln (+ + ) + b) rccos bc) sin cos cd) e de) ( 7) cos (3 + π) ef) (4 + 3) ln fg) sin ln (tg) Zdnie 5. Oblicz cłki: ) tg cos etg b) sin cos e cos c) 7 cos ( 4 ) d) ln (9 + ) e) sin 3 f) rcsin ( ) g) log π 7 (rcctg) + h) e. Cłkownie funkcji wymiernych Zdnie 6. Oblicz nstępujące cłki funkcji wymiernych: ) (3+6) 6 b) + c) d) 5 +3 e) f) 4 5 g) 4 5 h) +9 5 i) 6+9 j) + k) 6+3 l) +5 m) 3 n) o) 6 p) q) r) s) t) u) 6+9 v) w) Zdnie 7. Oblicz nstępujące cłki funkcji wymiernych: ) ( +)( ) b) c) (+)(+)(+3) d) + 3 e) f) 3 +8 g) ( +)( 3 +) h) ( +) i) j) ( +) 3 k) 4 + l) m) (+) 3 n) 4 + o) ( 4+3) p) q) 3 + r) ( 3) 4 s) t) u) 4 v) w) 4 ( )
3 ) y) z) WSKAZÓWKA do z): Zuwż, że 6 + dzieli się przez +..3 Cłkownie wyrżeń z niewymiernościmi Zdnie 8. Oblicz nstępujące cłki: 3 ) b) c) + d) e) ++ f) 3 3 g) 3 ( )(+) Zdnie 9. Oblicz nstępujące cłki: h) + (+) + ) +k b) 6+5 c) +3+ d) 4 +3 e) f) 7 6 g) h) 4 i) j) 3 + k) +3 4 l) m) (+) n) ( +) o) Zdnie. Stosując metodę współczynników nieoznczonych oblicz nstępujące cłki: ) 6 4 b) c) (3 ) d) e) +3 4 f) + 5 Zdnie. Stosując podstwienie α = oblicz nstępujące cłki typu t ( α) + b + c. n Zuwż, że podstwienie to sprowdz cłki do postci, dl której możliwe jest zstosownie metody współczynników nieoznczonych. ) ( ) 3 b) ( ) 4 3 Zdnie. Oblicz nstępujące cłki: ) b) c) 3 + d) e e +4e + e) +9 f) 9 (podstwijąc = 3 sin t) g) ( ) 6.4 Cłkownie wyrżeń z funkcjmi trygonometrycznymi Zdnie 3. Wyrź sin orz cos z pomocą tg. A nstępnie stosując podstwienie uniwerslne t = tg oblicz: ) +cos b) +sin c) 5+4 cos d) +sin sin (+cos ) Zdnie 4. Wyrź sin orz cos z pomocą tg. Nstępnie stosując odpowiednie podstwienie (t = tg lub t = sin lub t = cos ) oblicz: 3
4 ) sin 4 b) 3+sin cos cos 4 c) + cos d) +sin cos (+cos )(+sin ) e) sin 4 cos f) sin +tg g) sin 6 +cos 6 Zdnie 5. Oblicz: h) sin cos +sin 4 ) cos 5 cos 7 b) sin 4 sin c) sin cos 3 d) cos e) sin f) sin 3 g) sin 7 h) sin 4 i) cos 3 j) sin 4 cos 3 k) sin 4 cos l) sin m) cos n) ctg o) sin cos p) tg q) tg 4 r) ctg 4 s) cos 3 sin 4 t) sin cos u) sin cos v) cos 3 sin + w) tg sin ) sin cos y) sin ( + π ) cos 6.5 Cłkownie wyrżeń z funkcjmi cyklometrycznymi, wykłdniczymi i logrytmicznymi Zdnie 6. Oblicz: ) rctg b) (rctg) c) (+9 ) rctg3 d) ( + )rctg e) rctg f) rccos g) rctg 4 h) ( e 3 + e +e 3 ) i) e +e j) 3+e k) e e e +e l) e sin m) + n) e sin ( cos 3 sin ) cos o) + p) e 3 +e 3 q) log p r) ( ) ln s) 5 t) rcsin WSKAZÓWKA do t): Zstosuj wzór n cłkownie przez części. Krzywe n płszczyźnie dne równnimi prmetrycznymi i we współrzędnych biegunowych Zdnie 7. ) Czy punkt (5, ) leży n okręgu (t) = + 5 cos t, y(t) = sin t? b) Czy punkt (, 3) leży n okręgu (t) = cos t, y(t) = sin t? Zdnie 8. Sprowdź do postci y = f() lub F (, y) = równni linii dnych opisem prmetrycznym: ) (t) = 3t, y(t) = 6t t b) (t) = cos t, y(t) = sin t c) (t) = t 3 +, y(t) = t d) (t) = t sin t, y(t) = cos t e) (t) = cos 3 t, y(t) = sin 3 t f) (t) = (et + e t ), y(t) = (et e t ) g) (t) = tgt, y(t) = cos t 4
5 Zdnie 9. Znjdź wrtość prmetru t odpowidjącą dnym współrzędnym punktu n krzywej, której równnie dne jest prmetrycznie: ) (t) = 3( cos t cost), y(t) = 3( sin t sin t), P = ( 9, ) b) (t) = t + t, y(t) = t 3 + t, P = (3, ) c) (t) = tgt, y(t) = sin t + sin t, P = (, ) Zdnie. W biegunowym ukłdzie współrzędnych (r, ϕ) zzncz punkty A = (3, ), B = (, π 4 ), C = (3, π ). Zdnie. Nrysuj krzywe: ) r = ( + cos ϕ) b) r = ϕ, > c) r = cos ϕ 3 Cłk oznczon Zdnie. Korzystjąc z twierdzeni Newton-Leibniz oblicz nstępujące cłki oznczone: ) f(), gdzie f() = { dl dl < d) 3 sgn( 3 ) e) π ( + ) cos f) e g) i) ln e j) π π 6 b) e ln c) π sgn(cos ) e h) 4 +e cos k) π 5+sin sin cos l) 9 ( ) 4 m) 3 Zdnie 3. Oblicz podne cłki, jeśli 4 f() = 4, 4 g() =. ) 4 f() b) 4 f() g() + +3 Zdnie 4. ) Wykż, że jeśli funkcj y = f() jest ciągł i przyst n przedzile [, ], to wówczs f() = f(). b) Wykż, że jeśli funkcj y = f() jest ciągł i nieprzyst n przedzile [, ], to wówczs c) Uzsdnij równości: Zdnie 5. że f() =. ln ( + ) =, e cos = e cos. ) Niech f będzie funkcją cłkowlną, okresową o okresie T > n R. Uzsdnij, R : T f() = +T f(), 5 +nt +T f() = n f().
6 b) Uzsdnij równość 4π sin = 5 π sin. π Zdnie 6. Oblicz cłki: ) g(), gdy g() = { dl / N dl N ) { dl / Z \ {} g(), gdy g() = dl Z \ {} Zdnie 7. Wyjśnij, dlczego formlne użycie twierdzeni Newton-Leibniz przy obliczniu podnych niżej cłek prowdzi do błędnych wyników. ) b) ( ) rctg 4 Cłki niewłściwe Zdnie 8. Korzystjąc z definicji zbdj zbieżność nstępujących cłek niewłściwych pierwszego rodzju (dl cłek zbieżnych oblicz ich wrtości): ) + b) + 4 c) sin d) + 3+ e) + ln f) + sin g) + e sin h) + ++ i) +4 j) k) + e l) + ln ( + ) m) + rcctg n) q) + t) + + rctg o) + e p) Zdnie 9. Oblicz pole obszru nieogrniczonego, którego brzegiem jest odcinek prostej =, część osi O, dl < i część krzywej y =, dl [, + ). (+) Zdnie 3. Oblicz pole obszru nieogrniczonego, którego brzegiem jest prost y = orz krzyw y =. 4 + Zdnie 3. Zndj zbieżność cłki, dl >, α >. α Zdnie 3. Korzystjąc z definicji zbdj zbieżność nstępujących cłek niewłściwych drugiego rodzju (dl cłek zbieżnych oblicz ich wrtości): ) ( ) b) e ln c) 3 d) e) f) ln g) 3 π π sin h) π 3 cos 3 sin i) 3 π sin j) e k) ln l) 4+3 m) n) rcsin o) +3 Zdnie 33. Zbdj zbieżność cłki b, dl < b, λ >. ( ) λ Zdnie 34. Oblicz pole obszru, którego brzegiem jest odcinek osi O dl 9, rzędne w punktch =, = 9 i krzyw y = 3. 6
7 5 Zstosowni geometryczne cłki oznczonej 5. Funkcj dn wzorem y=f() lub równniem F(,y)= Zdnie 35. Podj przykłdowy wzór funkcji f tkiej, że: ) f const, f() = b) f() =, f() <, f() = c) f() =, [, ] : f() d) f() =, f() = 4, : f() Zdnie 36. Oblicz pol obszrów ogrniczonych krzywymi: ) y = sin, dl [, π] orz osią O b) 9 + y 4 = c) y = 3 + dl [, ] i osią O d) y =, = 8 e) y = sin, y = cos () i osią Oy f) y =, y =, y = 8 dl g) y =, y = 5, y = 5 h) y =, y = 3 i) ( ) + (y ) = 4 4 j) y = +4 3, y = 6, y = 4 3 k) y = 4, +y = 5 l) y =, +y 4 = m) y ( ) = ( ) Zdnie 37. Dn jest elips + y = i leżący n elipsie, w I ćwirtce ukłdu współrzędnych b punkt P = (, y ). Oblicz pole obszru trpezu krzywoliniowego, będącego wycinkiem obszru ogrniczonego elipsą, o wierzchołkch (, ), (, b), P, (, ). Zdnie 38. Oblicz długości nstępujących łuków: ) y =, [, ] b) y = odcięty prostą = 4 3 c) y =, [, ] d) y = ln (sin ), [ π 3, π ] e) y = ln, [ 3, ] f) y = + rcsin g) y = ln e + e Zdnie 39. W jim stosunku prbol y = dzieli kwdrt K = {(, y) :, y }. Oblicz pole i obwód jednego z dwóch (dowolnie wybrnego) wycink tego kwdrtu. Zdnie 4. Oblicz objętość bryły ogrniczonej powierzchnią powstł przez obrót: ) dookoł osi O łuku prboli y = 4, w grnicch 3. b) dookoł osi O linii y = sin orz płszczyznmi =, = π. 7
8 c) dookoł osi O figury płskiej ogrniczonej krzywymi o równnich y =, y =. d) dookoł osi Oy figury płskiej, y e. e) łuku krzywej y = e sin, dl [, π] dookoł osi. f) dookoł osi O figury płskiej ogrniczonej krzywymi o równnich y = 3, y =. Zdnie 4. Oblicz pole powierzchni Σ powstłej z obrotu: ) wokół osi O wykresu funkcji y = 3, dl. b) wokół osi O okręgu + (y 3) = 4 (otrzymujemy torus). c) prboli y = odciętej prostą y = 3 wokół osi Oy. Zdnie 4. Oblicz objętość bryły ogrniczonej przez + y b =, + z =. b Zdnie 43. Oblicz objętość bryły powstłej przez obrót figury ogrniczonej przez =, y = 4 wokół osi Oy. Zdnie 44. Oblicz objętość bryły powstej przez obrót wokół osi Oy figury ogrniczonej przez y = orz y =. Zdnie 45. Oblicz pole powierzchni i objętość kuli + y + z R. Zdnie 46. Oblicz objętość elipsoidy powstłej z obrotu wokół osi O łuku elipsy + y =. b Zdnie 47. Oblicz objętość i pole powierzchni bryły obrotowej (tu elipsoid) powstłej przez obrót dookoł osi O krzywej 6 + 8y = 44. Uwg: Równnie elipsy o środku w punkcie (, y ) i półosich długości, b: ( ) + (y y ) b = 5. Krzywe dne równnimi prmetrycznymi Zdnie 48. Oblicz pole obszru ogrniczonego łukiem cykloidy = (t sin t), y = ( cos t) dl t [, π]i osią O. Zdnie 49. Oblicz pole obszru ogrniczonego pętlą linii = t, y = t 3 t3, t [, 3]. Zdnie 5. Oblicz pole obszru ogrniczonego steroidą (t) = cos 3 t, y(t) = sin 3 t. Zdnie 5. Oblicz długość łuku krzywej: ) (t) = r cos t, y(t) = r sin t (okrąg o promieniu r). b) = r(cos t + t sin t), y = r(sin t t cos t), t [, π], r > (ewolwent okręgu). c) = t, y = t t3 3, t [, 3]. d) = cos t + ln(tg t ), y = sin t, t [ π, 3 π]. 8
9 Zdnie 5. Oblicz objętość i pole powierzchni bryły utworzonej przez obrót dookoł osi O: ) krzywej = R cos t, y = R sin t, t [, π]. b) cykloidy = (t sin t), y = ( cos t), t [, π], >. Zdnie 53. Oblicz pole powierdzni bryły obrotowej powstłej przez obrót wokół osi O steroidy = cos 3 t, y = sin 3 t. Zdnie 54. Oblicz pole powierzchni bryły powstłej przez obrót wokół osi O krzywej = 3t sin 3t + cos 3t, y = 3t cos 3t sin 3t, t [ π 6, ]. 5.3 Współrzędne biegunowe Zdnie 55. Oblicz pole obszru ogrniczonego: ) krdioidą r = ( + cos θ), >, θ [, π]. b) rozetą czterolistną r = sin ϕ, dl > orz ϕ [, π]. Zdnie 56. Oblicz długośc łuku krzywej: ) r = ( + cos ϕ), >, ϕ [, π ] b) r = sin3 ϕ 3, ϕ [, π 3 ] Zdnie 57. Nszkicuj podne krzywe i oblicz pol ogrniczonych nimi obszrów. W tym celu wprowdź współrzędne biegunowe. ) ( + y ) = ( y ), > (lemniskt Bernoulliego) b) ( + y ) 3 = 4 y( y ), > 9
Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii
Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
f(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
VI. Rachunek całkowy. 1. Całka nieoznaczona
VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
CAŁKA OZNACZONA JAKO SUMA SZEREGU
CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
III. Rachunek całkowy funkcji jednej zmiennej.
III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).
Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)
Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.
Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem
Analiza matematyczna i algebra liniowa Całka oznaczona
Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Analiza Matematyczna. Całka Riemanna
Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.
Analiza Matematyczna (część II)
Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
Zastosowania całki oznaczonej
Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri Środowisk w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia
1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
zestaw DO ĆWICZEŃ z matematyki
Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij
( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)
List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f
Zestaw wybranych wzorów matematycznych
Zestw wybrnych wzorów mtemtycznych mtemtyk elementrn pochodne cłki geometri nlityczn w 3D elementy trygonometrii sferycznej Piotr Choczyński p.j.choczynski@wp.pl www.e-korepetycje.net/pjchocz 9.0.07 v.
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość
Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1
Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.
Całka oznaczona funkcji jednej zmiennej rzeczywistej. Autorzy: Witold Majdak
Cłk oznczon funkcji jednej zmiennej rzeczywistej Autorzy: Witold Mjdk 6 Spis treści Definicj cłki oznczonej Riemnn Włsności cłki Riemnn Twierdzenie o średniej cłkowej funkcji Pierwsze zsdnicze twierdzenie
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
1 Rachunek zdań 3. 2 Funkcje liczbowe 6
Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2
Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa
Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZMIN MTURLNY Z MTEMTYKI ZESTW PRZYGOTOWNY PRZEZ SERWIS WWW.ZDNI.INFO POZIOM PODSTWOWY 24 MRC 2018 CZS PRCY: 170 MINUT 1 Zadania zamknięte ZDNIE 1 (1 PKT) Niech a = 2, b = 1 i c = 3. Wartość wyrażenia
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
ZAKRES WYMAGAŃ Z MATEMATYKI
ZAKRES WYMAGAŃ Z MATEMATYKI W RAMACH PRZYGOTOWAŃ DO EGZAMINU GIMNAZJALNEGO PRZYKŁADOWE ZAGADNIENIA CZĘŚĆ I. Elementrne dziłni n liczbch wymiernych. Dziłni wykonywne w pmięci. II. Liczby wymierne. Włsności
PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,
WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne
MATEMATYKA 1 MACIERZE I WYZNACZNIKI
MATEMATYKA 1 MACIERZE I WYZNACZNIKI Definicj 1. Niech A i B będą dowolnymi zbiormi. Zbiór A B = {(, b) : A b B} wszystkich pr uporządkownych (, b) tkich, że A i b B nzywmy iloczynem krtezjńskim zbiorów
Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
Sprawdzian całoroczny kl. III
Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji
Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy
Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
Wymagania edukacyjne z matematyki
Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e
Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
Lista 1 - Funkcje elementarne
Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi
Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje
Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne
Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie
Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu