Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
|
|
- Kazimierz Drozd
- 8 lat temu
- Przeglądów:
Transkrypt
1 Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski
2
3
4 ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość F (x) = f(x) dl kżdego x (, b), to funkcję F nzywmy funkcją pierwotną funkcji f w przedzile (, b). Definicj 7.2. Niech f : [, b] R będzie funkcją. Jeżeli dl pewnej funkcji F : [, b] R m miejsce równość F (x) = f(x) dl x (, b) orz F +() = f() i F (b) = f(b), to funkcję F nzywmy funkcją pierwotną funkcji f w przedzile [, b]. Włsność 7.1. Dwie funkcje pierwotne dnej funkcji różnią się o stłą. Istotnie, jeśli F i G są dwiem funkcjmi pierwotnymi funkcji f, to F (x) G (x) = f(x) f(x) = 0 dl kżdego x (, b), więc funkcj F G jest stł. Rodzinę funkcji pierwotnych dnej funkcji nzywmy cłką nieoznczoną tej funkcji. 2. Definicj cłki Riemnn Niech f : [, b] R będzie funkcją ogrniczoną. Podziłem π przedziłu [, b] nzywmy skończony ciąg π = (x 0, x 1,..., x n ), tki, że = x 0 < x 1 < < x n = b. Zbiór wszystkich możliwych podziłów przedziłu [, b] będziemy oznczli symbolem Ξ. Dl podziłu π tworzymy tzw. sumę górną i sumę dolną cłkową funkcji f w sposób nstępujący: S(π) = n sup {f(x) : x [x i 1, x i ]} (x i x i 1 ), i=1
5 60 Jcek M. Jędrzejewski n s(π) = inf {f(x) : x [x i 1, x i ]} (x i x i 1 ). i=1 Czsem sumy te będziemy oznczli z oznczeniem funkcji i podziłu, dl których są te sumy zbudowne; wtedy oznczeni te są nstępujące: s f (π) i S f (π). Oczywiście, prwdziw jest nierówność s(π) S(π). Podził π 2 nzywmy drobniejszym od podziłu π 1, gdy kżdy punkt ciągu tworzącego podził π 1 jest punktem podziłu π 2. W tkim przypdku będziemy pisli π 1 π 2. Łtwo dowodzimy nstępujących włsności. Włsność 7.2. Jeśli π 1 π 2 to s(π 1 ) s(π 2 ) S(π 2 ) S(π 1 ). Włsność 7.3. Dl dowolnych podziłów π 1 i π 2 przedziłu [, b] spełnion jest nierówność (b ) c s(π 1 ) S(π 2 ) (b ) d, gdzie c = inf {f(x) : x [, b]}, orz d = sup {f(x) : x [, b]}. Zuwżmy terz, że zbiory {s(π) : π Ξ}, {S(π) : π Ξ} są ogrniczone; istnieją więc kresy tych zbiorów. Mmy przy tym: Włsność 7.4. Dl dowolnej funkcji f : [, b] R ogrniczonej w przedzile [, b] mmy c(b ) sup {s(π) : π Ξ} inf {S(π) : π Ξ} d(b ), gdzie c = inf {f(x) : x [, b]}, orz d = sup {f(x) : x [, b]}. Definicj 7.3. Liczbę sup {s(π) : π Ξ} nzywmy cłką dolną funkcji f w przedzile [, b] (dokłdniej, dolną cłką Drboux) i oznczmy symbolem zś liczbę f(x)dx, inf {S(π) : π Ξ} nzywmy cłką górną funkcji f w przedzile [, b] (górną cłką Drboux) i oznczmy symbolem f(x)dx,
6 Nottki z nlizy 61 Definicj 7.4. Jeśli dl ogrniczonej funkcji f : [, b] R, cłk doln jest równ cłce górnej, to mówimy, że funkcj f jest cłkowln w sensie Riemnn w przedzile [, b]; wspólną wrtość cłki dolnej i cłki górnej nzywmy cłką Riemnn funkcji f w przedzile [, b] i oznczmy symbolem f(x) dx. 3. Włsności cłki Riemnn Twierdzenie 7.1. Jeżeli funkcj f : [, b] R jest ogrniczon, to jest cłkowln wtedy i tylko wtedy, gdy dl kżdej liczby dodtniej ε istnieje podził π przedziłu [, b], dl którego (0 )S(π) s(π) < ε. Bezpośrednio z definicji cłki Riemnn i kresów zbioru wynik: Wniosek 7.1. Jeżeli funkcj f : [, b] R jest ogrniczon, to jest cłkowln wtedy i tylko wtedy, gdy istnieje liczb I tk, że dl kżdej liczby dodtniej ε istnieje podził π przedziłu [, b], dl którego I s(π) < ε i I S(π) < ε. Wtedy, jeśli funkcj jest cłkowln, to jej cłką jest liczb I. Twierdzenie 7.2. Kżd funkcj ciągł f : [, b] R jest cłkowln. Twierdzenie 7.3. Jeśli funkcj f : [, b] R jest cłkowln orz istnieją liczby c i d tkie, że c f(x) d, dl x [, b], to c (b ) f(x) dx d (b ). Twierdzenie 7.4. Niech f : [, b] R i g : [, b] R będą funkcjmi cłkowlnymi i α liczbą rzeczywistą. Wówczs nstępujące funkcje: f + g, f g, α f są cłkowlne i spełnione są równości: (f + g)(x) dx = (f g)(x) dx = (αf)(x) dx = α f(x) dx + f(x) dx f(x) dx. g(x) dx, g(x) dx,
7 62 Jcek M. Jędrzejewski Twierdzenie 7.5. Jeżeli funkcj f : [, b] R jest cłkowln w przedzile [, b], to jest cłkowln w kżdym podprzedzile [c, d] przedziłu [, b]. Pondto, jeśli c (, b), to c f(x) dx + c f(x) dx = g(x) dx Prwdziwe jest też twierdzenie odwrotne. Twierdzenie 7.6. Jeśli c (, b) i funkcj f : [, b] R jest cłkowln w przedziłch [, c] i [c, b], to funkcj f jest cłkowln w przedzile [, b] i c f(x) dx + c f(x) dx = g(x) dx Twierdzenie 7.7. Jeśli funkcj f : [, b] R m skończony lub przeliczlny zbiór punktów nieciągłości, to jest cłkowln w przedzile [, b]. Twierdzenie 7.8. Jeśli funkcje f : [, b] R i g : [, b] R są cłkowlne i f(x) g(x) dl wszystkich x [, b], to f(x) dx g(x) dx. Twierdzenie 7.9. Jeżeli funkcj f : [, b] R jest cłkowln, to funkcj f też jest cłkowln i f(x) dx f(x) dx. Twierdzenie (Twierdzenie o wrtości średniej) f : [, b] R jest ciągł w przedzile [, b], to istnieje punkt c [, b] tki, że 1 b f(x)dx = f(c). 4. Podstwowe twierdzenie rchunku cłkowego Jeśli funkcj Twierdzenie Jeśli funkcj f : [, b] R jest ciągł, to funkcj F : [, b] R określon w nstępujący sposób: F (x) = jest ciągł. x f(t)dt Twierdzenie (Podstwowe tw. rchunku cłkowego) f : [, b] R jest funkcją ciągłą i F : [, b] R jest określon nstępująco: F (x) = x f(t)dt dl x [, b], to funkcj F jest różniczkowln w kżdym punkcie przedziłu (, b) orz Jeśli F (x) = f(x), dl x (, b).
8 Z powyższego twierdzeni wynik równość: f(x)dx = F (b). N mocy poprzedniej włsności zś stwierdzmy: Nottki z nlizy 63 Twierdzenie Niech f : [, b] R będzie funkcją ciągłą. Jeśli G : [, b] R jest funkcją pierwotną funkcji f, to f(x)dx = G(b) G(). Wniokujemy ztem, że powyżej określon funkcj F jest funkcją pierwotną funkcji f. 5. Dlsze włsności cłki Twierdzenie (O cłkowniu przez części) Niech f i g będą funkcjmi ciągłymi w przedzile [, b], różniczkowlnymi w przedzile (, b) i pochodne będą ciągłe w przedzile (, b). Wtedy (f g) (x)dx = (fg)(b) (fg)() Twierdzenie (O cłkowniu przez podstwinie) (g f) (x)dx. Niech g : [, b] [c, d] będzie funkcją ciągłą spełnijącą nstępujące wrunki: 1. g() = c, g(b) = d, 2. g m ciągłą pochodną w przedzile (, b), 3. g (x) 0 dl kżdego x (, b). Jeśli f : [c, d] R jest funkcją ciągłą, to d c f(x)dx = f(g(t)) g (t)dt. Twierdzenie Niech (f n ) n=1 będzie ciągiem funkcji ciągłych w przedzile [, b] zbieżnym jednostjnie do funkcji f. Wtedy funkcj f jest cłkowln w przedzile [, b] i lim n f n (x)dx = f(x)dx. Wniosek Jeżeli szereg n=1 f n funkcji ciągłych w przedzile [, b] jest jednostjnie zbieżny do funkcji f : [, b] R, to funkcj f jest cłkowln i f n (x)dx = f(x)dx. n=1
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
VI. Rachunek całkowy. 1. Całka nieoznaczona
VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x
nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.
Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
Analiza Matematyczna (część II)
Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Analiza Matematyczna. Całka Riemanna
Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn
Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.
Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem
Analiza matematyczna i algebra liniowa Całka oznaczona
Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e
1 Rachunek zdań 3. 2 Funkcje liczbowe 6
Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2
Pochodne i całki, macierze i wyznaczniki
Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk
III. Rachunek całkowy funkcji jednej zmiennej.
III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
9. Całkowanie. I k. sup
9. Cłkownie Zcznijmy od podstwowego dl teorii cłki pojęci podziłu. Podziłem odcink [, b] R nzywmy kżdy skończony zbiór P [, b] zwierjący ob końce odcink. Niech będą punktmi podziłu P. Odcinki = x < x
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x
CAŁKA OZNACZONA JAKO SUMA SZEREGU
CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o
Matematyka dla biologów Zajęcia nr 7.
Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).
MATEMATYKA 1 MACIERZE I WYZNACZNIKI
MATEMATYKA 1 MACIERZE I WYZNACZNIKI Definicj 1. Niech A i B będą dowolnymi zbiormi. Zbiór A B = {(, b) : A b B} wszystkich pr uporządkownych (, b) tkich, że A i b B nzywmy iloczynem krtezjńskim zbiorów
3. F jest lewostronnie ciągła
Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )
2. Analiza Funkcje niepustymi zbiorami. Funkcja
2. Anliz Kresy: infim i suprem Wprowdzmy oznczenie dl rozszerzonej prostej rzeczywistej: R = R {, + }, przy czym w zbiorze tym zchowujemy nturlny porzdek w R orz przyjmujemy, że < < dl R. Niech A R. Ogrniczeniem
Niewymierność i przestępność Materiały do warsztatów na WWW6
Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
Wariacje Funkcji, Ich Własności i Zastosowania
Środowiskowe Studi Doktornckie z Nuk Mtemtycznych Uniwersytet Mrii Curie-Skłodowskiej w Lublinie Józef Bnś Ktedr Mtemtyki Politechnik Rzeszowsk Wricje Funkcji, Ich Włsności i Zstosowni Lublin 2014 Spis
Wykład 3: Transformata Fouriera
Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i
Spis treści. 1 Wprowadzenie 2
Spis treści 1 Wprowdzenie 2 2 Podstwowe przestrzenie funkcyjne 14 2.1 Przestrzenie L p (, b) i L (, b)......................... 14 2.2 Przestrzenie L p (, b) L p (, b) i L (, b) L (, b)............. 27
O SZEREGACH FOURIERA. T (x) = c k e ikx
O SZEREGACH FOURIERA Funkcję postci. Wielominy i szeregi trygonometryczne. T x = N k= N c k e ikx nzywmy wielominem trygonometrycznym. Jk widć, wielomin trygonometryczny jest funkcją okresową o podstwowym
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Całka oznaczona funkcji jednej zmiennej rzeczywistej. Autorzy: Witold Majdak
Cłk oznczon funkcji jednej zmiennej rzeczywistej Autorzy: Witold Mjdk 6 Spis treści Definicj cłki oznczonej Riemnn Włsności cłki Riemnn Twierdzenie o średniej cłkowej funkcji Pierwsze zsdnicze twierdzenie
Plan wykładów z Matematyki, I 2014/2015 semestr zimowy. (a) Podstawowe funkcje: pierwiastki, funkcja potęgowa, logarytm.
Pln wykłdów z Mtemtyki, I 014/015 semestr zimowy 1. Powtórk i widomości wstępne. () Podstwowe funkcje: pierwistki, funkcj potęgow, logrytm. (b) Trygonometri. (c) Dwumin Newton, przystość funkcji.. Rchunek
Całki niewłaściwe. Funkcje Γ i B Eulera oraz ich zastosowania
Rozdził Cłki niewłściwe. Funkcje Γ i B Euler orz ich zstosowni W tym rozdzile omówimy pojęcie cłki niewłściwej. Zjmiemy się też dwom brdzo wżnymi konkretnymi typmi tkich cłek: funkcjmi Γ (gmm i B (bet
Uniwersytet Mikołaja Kopernika w Toruniu
Uniwersytet Mikołj Kopernik w Toruniu Wydził Mtemtyki i Informtyki Krzysztof Frączek Anliz Mtemtyczn I Wykłd dl studentów I roku kierunku informtyk Toruń 206 Spis treści Liczby rzeczywiste 2 Ciągi liczbowe
WYKŁAD 11: CAŁKOWANIE
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 11: CAŁKOWANIE KOGNITYWISTYKA UAM, 2016 2017 JERZY POGONOWSKI Zkłd Logiki i Kognitywistyki UAM pogon@mu.edu.pl Początki systemtycznego rchunku różniczkowego
Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p.
Metody numeryczne Cłkownie Jnusz Szwbiński szwbin@ift.uni.wroc.pl nm_slides-4.tex Metody numeryczne Jnusz Szwbiński 23/10/2002 10:07 p.1/69 Cłkownie numeryczne 1. Kilk uwg ogólnych 2. Kwdrtury Newton Cotes
Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii
Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy
http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
2 Całka oznaczona-cd Rozdrobnienia podziałów Warunki równoważne całkowalności Własności funkcji całkowalnych...
Spis treści Uzupełnieni do wykłdu. (4 III 200) 2. Jednostjn ciągłość funkcji.................... 2.2 Cłk Riemnn (heurez)..................... 3.3 Cłk Riemnn -konstrukcj................... 4.4 Przykłdy
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).
Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie
Obliczenia naukowe Wykład nr 14
Obliczeni nuowe Wyłd nr 14 Pweł Zielińsi Ktedr Informtyi, Wydził Podstwowych Problemów Technii, Politechni Wrocłws Litertur Litertur podstwow [1] D. Kincid, W. Cheney, Anliz numeryczn, WNT, 2005. [2] A.
f(x) dx = F (x) + const, (9.1)
Rozdził 9 Cłk W tym rozdzile zjmujemy się cłkowniem. Jest to, obok różniczkowni i znjdowni wszelkich grnic, jedn z njwżniejszych opercji w cłej nlizie mtemtycznej. Mówiąc niezbyt precyzyjnie, cłkownie
Sprawy organizacyjne
Sprwy orgnizcyjne Litertur Wykłd będzie w zsdzie smowystrczlny. Oto kilk pozycji przydtnej litertury uzupełnijącej (wszystkie pozycje zostły wydne przez PWN: Andrzej Birkholc, Anliz mtemtyczn. Grigorij
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Materiały do kursu Matematyka na kierunku Informatyka studia stacjonarne
Mteriły do kursu Mtemtyk n kierunku Informtyk studi stcjonrne Ryszrd Rębowski 9 mrc 09 Wstęp Przedstwiony poniżej mterił nleży rozumieć jko uzupełnienie do wykłdu z Mtemtyki w rmch kursu Mtemtyk przeprowdzonego
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
GEOMETRIA Z TOPOLOGIĄ NOTATKI NA ZAJĘCIA. Spis treści
GEOMETRIA Z TOPOLOGIĄ NOTATKI NA ZAJĘCIA Wydził Mtemtyki i Informtyki Uniwersytet Łódzki Spis treści 1. Przestrzenie metryczne 1 1.1. Definicje i przykłdy 1 1.2. Zbieżności, zbiory 2 1.3. Odwzorowni przestrzeni
PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,
WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz
Równania różniczkowe w przestrzeniach Banacha
Równni różniczkowe w przestrzenich Bnch 1 Równni różniczkowe w przestrzenich Bnch Wojciech Kryszewski 1. Preliminri Złóżmy, że E jest przestrzenią Bnch (nd R lub C), I jest przedziłem ( 1 ) niezdegenerownym
Zastosowania całki oznaczonej
Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego
Analiza matematyczna ISIM II
Anliz mtemtyczn ISIM II Ryszrd Szwrc Spis treści Cłki niewłściwe 3. Cłki niewłściwe z funkcji nieujemnych............ 9.2 Cłki i szeregi........................... 2.3 Cłki niewłściwe z osobliwością w
Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y
Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =
Wstęp do Analizy Matematycznej funkcje jednej zmiennej. Stanisław Spodzieja
Wstęp do Anlizy Mtemtycznej funkcje jednej zmiennej Stnisłw Spodziej Łódź 2014 2 Wstęp Książk t jest niezncznie zmodyfikowną wersją wykłdu z nlizy mtemtycznej dl pierwszego roku mtemtyki, jki prowdziłem
Matematyka dla biologów wykład 10.
Mtemtyk dl biologów wykłd 10. Driusz Wrzosek 13 grudni 2016 Cłki i krzywe Cłki przypomnienie Cłki zstosowni Zstosowni cłek: obliczni pól i objętości figur, długości krzywych; rozwizywnie równń różniczkowych
PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
Analiza Matematyczna II
Uniwersytet Jn Kochnowskiego w Kielcch Wydził Mtemtyczno-Przyrodniczy Instytut Mtemtyki Dr hb. prof. UJK Grzegorz Łysik Anliz Mtemtyczn II Skrypt wykłdów Kielce, 212. 1 1 Funkcje wielu zmiennych 1.1 Przestrzeń
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
Analiza Matematyczna
Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził
Całkowanie numeryczne przy użyciu kwadratur
Cłkownie numeryczne przy użyciu kwdrtur Pln wykłdu: 1. Kwdrtury Newton-Cotes ) wzory: trpezów, prbol etc. b) kwdrtury złożone. Ekstrpolcj ) Ekstrpolcj Richrdson b) Metod Romberg c) Metody dptcyjne 3. Kwdrtury
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Wojciech Kryszewski. Inkluzje różniczkowe. Wykład monograficzny
Wojciech Kryszewski Inkluzje różniczkowe Wykłd monogrficzny Wydził Mtemtyki i Informtyki UMK Wydził Fizyki Technicznej i Mtemtyki Stosownej PŁ Toruń/Łódź 2014 ISBN xxxx c Copyright by Wojciech Kryszewski
Notatki do wykªadu z analizy matematycznej I. Piotr Bartªomiejczyk opracowali Krzysztof Woyke i Šukasz Zªotowski
Nottki do wykªdu z nlizy mtemtycznej I Piotr Brtªomiejczyk oprcowli Krzysztof Woyke i Šuksz ªotowski Instytut Mtemtyki Uniwersytet Gd«ski Przedmow Spis tre±ci Rozdziª 1. Grnice ci gów i funkcji 1 1. Grnice
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne
Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0
EGZAMIN, ANALIZA A, 5.0.04 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 4=4.0, 48=4.5, 54=5.0 Zadanie. W każdym z zadań.-.5 podaj w postaci uproszczonej) kresy zbioru oraz napisz, czy kresy należą do zbioru
XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:
XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon
Wykład z matematyki dla studentów Inżynierii Środowiska. Wykład 1. Literatura PRZEGLĄD FUNKCJI ELEMENTARNYCH
Wykłd z mtemtyki dl studentów Inżynierii Środowisk Wykłd. Litertur. Gewert M., Skoczyls Z.: Anliz mtemtyczn, Oficyn Wydwnicz GiS, Wrocłw, 0.. Jurlewicz T., Skoczyls Z.: Algebr liniow, Oficyn Wydwnicz GiS,
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)
Prce Koł Mt. Uniw. Ped. w Krk. 1 014), 1-5 edgogicznego w Krkowie PKoło Mtemtyków Uniwersytetu Prce Koł Mtemtyków Uniwersytetu Pedgogicznego w Krkowie 014) Bet Gwron 1 Kwdrtury Newton Cotes Streszczenie.
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3
RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 006/7 3. Liczby nturlne i rzeczywiste; funkcje elementrne.. Funkcje. Niech X i Y będą zbiormi. Definicj.. Funkcją (inczej: odwzorowniem) z X do Y nzyw się przyporządkownie
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
Zbiory wyznaczone przez funkcje zdaniowe
pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny
Analiza Matematyczna I.2
Anliz Mtemtyczn I. wiczeni, seri, P. Nyr, /3 Zdnie. Niech f, g : (, ) R b d jednostjne ci gªe. Czy fg te» jest jednostjnie ci gª? Co si stnie, je±li zbiór (, ) zst pimy zbiorem (, )? Zdnie. Funkcj f :
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki krzywoliniowe
Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki krzywoliniowe 8.04.018 1. efinicj cłki krzywoliniowej nieskierownej Rozwżmy nstępujący problem. ny jest przewód elektryczny n którym rozmieszczone
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań