Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018
|
|
- Kinga Stachowiak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
2 Liteatua 1 Geodezja współczesna - Kazimiez Czanecki, PWN Geodezja fizyczna - Adam Łyszkowicz, Wyd. Uniwesytetu Wamińsko-Mazuskiego w Olsztynie Geodezja fizyczna i gawimetia geodezyjna. Teoia i paktyka - Macin Balik, Andzej Pachuta, Oficyna Wydawnicza Politechniki Waszawskiej Physical Geodesy - Matin Vemee, mvemee/mpk-en.pdf D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
3 Siła gawitacyjna - powtóka F = GMm 2, a = F m = GM 2, = x 2 + y 2 + z 2 G = 6, 67408(31) m 3 kg s 2, 0, 01 m s 2 = 1Gal m s 2 = 1mGal, Oznaczenia: a - pzyspieszenie gawitacyjne, g - pzyspieszenie siły ciężkości (siły gawitacji i siły odśodkowej) D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
4 Potencjał: V = GM Wekto pzyspieszenia jest gadientem potencjału pola gawitacyjnego: ( V a = V = x, V y, V ) z ( V x = GM x 1 x 2 + y 2 + z 2 ) = GM ( (x 2 + y 2 + z 2 ) 1/2) = MG( 1 x 2 )(x2 + y 2 + z 2 ) 3/2 2x = GM x 3 a = ( GM x 3, GM y 3, GM z ) 3 = GM 3 (x, y, z) a = a = GM 3 (x, y, z) = GM 2 Dla sfey kieunek pionu = kieunek gadientu = kieunek adialny: Analogicznie: ( ) dv 1 ( d = GM = GM 1) = GM 2 = GM 2 = V = a ( ) da 1 ( d = GM 2 = GM 2) = 2GM 3 = 2 GM 3 = 2 a - pzyspieszenie maleje waz ze wzostem D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
5 Potencjał V = GM jest funkcja hamoniczna - tzn. spełnia ównanie Laplace a: Spawdzenie: Analogicznie: W sumie : 2 V x V y 2 2 V x V z 2 = x V = 0 2 V x V y V z 2 = 0 ( GM x 3 ) = = GM 5 ( 2x 2 + y 2 + z 2) 2 V y 2 2 V z 2 = GM 5 ( x 2 2y 2 + z 2) = GM 5 ( x 2 + y 2 2z 2) = GM 5 ( 2x 2 + y 2 + z 2 + x 2 2y 2 + z 2 + x 2 + y 2 2z 2) = 0 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
6 powiezchnie poziomowe - ekwipotencjalne Dla V = GM powiezchnie ekwipotencjalne: = const. D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
7 wyznaczanie wysokości D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
8 Potencjał gawitacyjny od niewielkiej masy m w odległosci l : V = Gm l V = i V i = i G m i l i V = G dm l m = σ(x, y, z) v = σ(x, y, z) x y z dm = σ(x, y, z)dxdydz Jeśli P(x P, y P, z P ), a element masy dm jest w punkcie (x, y, z), to l = (x x P ) 2 + (y y P ) 2 + (z z P ) 2 G V(x P, y P, z P ) = σ(x, y, z)dxdydz (x xp ) 2 + (y y P ) 2 + (z z P ) 2 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
9 Potencjał gawitacyjny V = G m l V = Σ i G m i l i V = G dm l l = ϱ l 2 = ϱ 2 = ( ϱ) ( ϱ) = 2 + ϱ 2 2 ϱ = 2 + ϱ 2 2ϱ cos ψ l = 2 + ϱ 2 2ϱ cos ψ = 1 + ( ) ϱ 2 2 Punkt P - ustalony - stałe ; elementy masy zmieniaja się - zmienne ϱ i ψ V = G dm 1 + ( ϱ ) 2 ( 2 ϱ ) cos ψ ( ) ϱ cos ψ D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
10 1 Rozwinięcie funkcji w szeeg (wzó) MacLauina: f (x) = n=0 f (n) (0) xn n! f (0) + f (0)x + f (0) x2 2! + f (3) (0) x3 3! + f (4) (0) x4 4! +... f (N) (0) xn N! 2 Funkcja podcałkowa: ( ϱ ) 2 ( 2 ϱ ) x = cos ψ 3 Rozwinięcie w szeeg: ( ) ϱ 2 2 ( ) ϱ cos ψ x 4 Wstawiajac za x ( ϱ ) 2 ( 2 ϱ ) = 1 1 cos ψ x = x x x x x [ ( ) ϱ 2 2 ( ) ] ϱ cos ψ [ ( ) ϱ 2 2 ( ) 2 ϱ cos ψ] +... D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
11 1 Pozadkuj ac względem potęg wyażenia ϱ : 1 + ( ) ϱ cos ψ + ( ϱ ( ϱ ) 2 ( 2 ϱ ) = cos ψ ) 2 ( ) 1 ( 3 cos 2 ψ 1) + 2 ( ϱ 2 auważamy, że pojawiaja się wielomiany Legende a ( funkcje kuliste ): ) 3 ( ) 1 ( 5 cos 3 ψ 3 cos ψ) P 0 (cos ψ) = 1, P 1 (cos ψ) = cos ψ, P 2 (cos ψ) = 3 2 cos2 ψ 1 2, P 3(cos ψ) = 5 2 cos3 ψ 3 2 cos ψ 3 Ostatecznie ozwinięcie jest postaci: 1 = 1 l ( ϱ ) 2 ( 2 ϱ ) = 1 cos ψ n=0 ( ) ϱ n P n (cos ψ) V = G dm l = G n=0 ( ) ϱ n P n (cos ψ) dm D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
12 Jeśli jest jednoodna kula (σ, M, R), to potencjał wyliczamy od azu bez ozwijania w szeeg, całkujac po całej kuli we współzędnych sfeycznych i dla > R otzymujemy V=GM/. Jeśli dla tej samej kuli będziemy całkować szeeg wyaz po wyazie, to okaże się, że pewne całki maja swoje intepetacje fizyczne. V = n=0 G ( ) ϱ n P n (cos ψ) dm = P 0 (cos ψ) = 1, P 1 (cos ψ) = cos ψ, P 2 (cos ψ) = 3 2 cos2 ψ 1 2, V n = V 0 + V 1 + V 2 + V n=0 V 0 = G 1 dm V 1 = G 2 ϱ cos ψ dm V 2 = G 2 3 Wzó ekuencyjny dla wielomianów Legende a dla n > 1 : P n(t) = 2n 1 t P n 1 (t) n 1 P n 2 (t). n n ( ) ϱ 2 3 cos 2 ψ 1 dm D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
13 V 0 = GM - potencjał dla kuli o masie M - gdyby iemia była jednoodna kula, to kolejne V n musiałyby się zeować. Powacamy teaz do układu współzędnych XY i można pzyjać, że poczatek tego układu pokywa się ze śodkiem ciężkości iemi, a osie - z osiami głównymi bezwładności. W układzie tym : ϱ = ϱ = x 2 + y 2 + z 2, atem: cos ψ = ϱ ϱ V 1 = V 1 = G 2 = xx P + yy P + zz P ϱ ϱ cos ψ dm = G 3 (xx P + yy P + zz P ) dm = G x 3 P x dm + y P y dm + z P z dm Tzy całki to tzw. momenty statyczne, więc jeśli współzędne śodka masy sa ówne (0,0,0), to te całki też się zeuja, więc V 1 = 0. D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
14 W całce dla V 2 mamy: ( ) ϱ 2 3 cos 2 ψ 1 = 1 (3(xx 2 P + yy P + zz P ) 2 2 ϱ 2) = 1 ) (3(xx 2 P + yy P + zz P ) 2 (x 2 P + y2 P + z2 P )(x2 + y 2 + z 2 ) =... = 1 2 [x 2 P Pzykładowo piewszy składnik: ( 2x 2 y 2 z 2) ( + y 2 P 2y 2 x 2 z 2) ( + z 2 P 2z 2 x 2 y 2) + +6x P y P (xy) + 6x P z P (xz) + 6y P z P (yz)] 2x 2 y 2 z 2 = (x 2 + z 2 ) + (x 2 + y 2 ) 2(y 2 + z 2 ) wstawiony do całki geneuje główne momenty bezwładności: V 2.1 = G ( ) 2 5 x2 P (x 2 + z 2 ) + (x 2 + y 2 ) 2(y 2 + z 2 ) dm = G ( ) 2 5 x2 P Iyy + I zz 2I xx podobnie dwa kolejne, a ostatnie tzy daja momenty dewiacyjne i pzykładowo: V 2.6 = G 2 5 6y Pz P (yz) dm = G 5 3y Pz P ( I ) yz Jeśli osie xyz pokywaja się z głównymi osiami bezwładności iemi, to momenty dewiacyjne sa ówne zeo. D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
15 V 2 = V V V 2.3 = G [ 2 5 x 2 ( ) ( ) ( ) ] P Iyy + I zz 2I xx + y 2 P Ixx + I zz 2I yy + z 2 P Ixx + I yy 2I zz Momenty bezwładności sa wyznaczane metodami astonomicznymi - sa to wielkości zędu kg m 2. W innych oznaczeniach: I xx, I yy, I zz A,B,C: V 2 = G 2 5 [ x 2 P (B + C 2A) + y2 P (A + C 2B) + z2 P (A + B 2C) ] D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
16 Dalsze ozwijanie potecjału w hamoniki sfeyczne Współzędne sfeyczne z = cos θ x = sin θ cos λ y = sin θ sin λ θ = π 2 φ cos θ = sin φ φ - szeokość geocentyczna, λ - długość geogaficzna D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
17 Niech punkt obsewacji P (o współzędnych katezjańskich (x P, y P, z P ) ma współzędne sfeyczne (, θ, λ) z P = cos θ, y P = sin θ sin λ, x P = sin θ cos λ i podobnie punkty obszau całkowania - (, θ, λ ) ( zamiast ϱ dla ujednolicenia notacji): z = cos θ, y = sin θ sin λ, x = sin θ cos λ własności iloczynu skalanego otzymujemy zwiazek między katami ψ, θ, θ, λ, λ : cos ψ = (x P, y P, z P ) (x, y, z) (x P, y P, z P ) (x, y, z = = cos θ cos θ + sin θ sin θ cos(λ λ). D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
18 Wtedy P n(cos ψ) = P n(cos θ cos θ + sin θ sin θ cos(λ λ)) pzyjmuje postać: P n(cos ψ) = P n(cos θ)p n(cos θ ) + 2 P n(cos ψ) = n m=1 (n m)! [ Pnm(cos θ) cos(mλ)p nm(cos θ ) cos(mλ ) (n + m)! +P nm(cos θ) sin(mλ)p nm(cos θ ) sin(mλ ) ] n m=0 (n m)! [ κ Pnm(cos θ) cos(mλ)p nm(cos θ ) cos(mλ ) (n + m)! +P nm(cos θ) sin(mλ)p nm(cos θ ) sin(mλ ) ], gdzie κ = 1 dla m = 0 i κ = 2 dla m > 0, a P nm to stowazyszone funkcje Legende a. Wzó na stowazyszone funkcje Legende a: Np. P nm(t) = (1 t 2) m 2 d m dt m Pn(t) P 2 (cos ψ) = 3 2 cos2 ψ 1 2 P 2 (t) = 3 2 t2 1 2 ( P 21 (t) = 1 t 2) 12 3t P 21 (cosψ) = 3 sin ψ cos ψ D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
19 P n(cos ψ) = n m=0 (n m)! [ κ Pnm(cos θ) cos(mλ)p nm(cos θ ) cos(mλ ) (n + m)! +P nm(cos θ) sin(mλ)p nm(cos θ ) sin(mλ ) ], Całkowanie jest po zmiennych pimowanych (potencjał wyznaczany jest w punkcie (, θ, λ)) V = G ( ) n P n (cos ψ) dm = GM ( 1 ) n 1 + P n (cos ψ) dm M n=0 n=2 = GM ( ) a n ( 1 ) n 1 + P n (cos ψ) dm M a n=2 a - długość ównikowej półosi elipsy; dla n = 0: dm = M = GM [ n 1 + n=2 m=0 ( ) a n (C nm cos(mλ) + S nm sin(mλ)) P nm(cos θ)] D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
20 C nm = Współczynniki ozkładu mas = 1 (n m)! κ M (n + m)! 1 M ( a ) n (n m)! κ (n + m)! Pnm(cos θ ) cos(mλ )dm ( ) n P nm(cos θ ) cos(mλ )σ(, φ, λ )dv a dv jest elementem objętości, σ(, φ, λ ) jest gęstościa. Analogicznie S nm =... sin(mλ )... Widać, że S n0 = 0 dla wszystkich n Współczynniki te wyznaczane sa na podstawie pomiaów satelitanych (np. z analizy obit satelitów), jak ównież na podstawie danych gawimetycznych zebanych na powiezchni iemi. Bak n = 1 w sumie: poczatek układu odniesienia pokywa się ze śodkiem masy iemi i stad C 10, C 11, S 10, S 11 0 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
21 Momenty bezwładności i momenty dewiacyjne: A = I xx B = I yy C = I zz D = I yz E = I xz F = I xy Np. A = I xx = 1 M ( y 2 + z 2) dm F = I xy = 1 (xy)dm M Oś z pokywa się z osia maksymalnego głównego momentu bezwładności (C): Spłaszczenie iemi : C 20 = C A+B 2 Ma 2 = 5 C 20 = 1, C 21 E 0 S 21 D 0 C 22 = B A 4Ma 2 S 22 = 10 6 F = Ma2 ( 10 9) J 2 = C 2 = C 20 f = 3 2 J a 2 ω 3 2 GM Stad J 2 nazywany jest spłaszczenem dynamicznym iemi (jest paametem dla GRS 80) D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
22 Model EGM96 W paktyce używa się unomowanych funkcji Legende a i wtedy odpowiednio oznaczane sa współczynniki ozkładu mas jako C nm oaz S nm [ V = GM 360 n ( ) a n 1 + ( Cnm cos(mλ) + S nm sin(mλ) ) Pnm(cos θ)] n=2 m=0 Źódło: Matin Vemee Physical Geodesy D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
23 Potencjał siły odśodkowej: dodanie potencjału siły odśodkowej V = 1 2 ω2 2 xy = 1 2 ω2 (x 2 + y 2 ) = 1 2 ω2 2 cos 2 φ a od = V = (ω 2 x, ω 2 y) = ω 2 xy Całkowity potencjał siły ciażenia: [ W = V + V = GM n ( ) a n 1 + ( Cnm cos(mλ) + S nm sin(mλ) ) Pnm(cos θ)] + ω2 2 cos 2 φ 2 n=2 m=0 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
24 Geoida w modelu EGM96 źódło: NASA Goddad Space Flight Cente D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
25 osie główne momentu bezwładności iemi S 22 = F 2Ma 2 = 10 6, F = I xy Ustalone osie x i y nie pokywaja się z osiami głównymi a i b momentu bezwładności. Kieunek osi a : W Kieunek osi b : E Źódło: H.S. Liu, B.F. Chao - Geophys. J, Int. (1991) 106, bfchao/publication/eng/ D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika / 24
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Wstęp. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 27 maca 2017 D inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 27 maca 2017 1
Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018
Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada 2018 1 / 24 Literatura 1 Geodezja współczesna
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Powtórka Dr inż. Liliana Bujkiewicz 17 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca 2017 1 / 26 Literatura 1 Geodezja współczesna -
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Anomalie grawimetryczne Redukcje i poprawki Liliana Bujkiewicz WPPT PWr Liliana Bujkiewicz (WPPT PWr) Geodezja fizyczna i geodynamika 1 / 10 Literatura 1 Geodezja współczesna
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
cz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Odchylenie pionu Dr inż. Liliana Bujkiewicz 17 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca 2017 1 / 24 Literatura 1 Geodezja współczesna
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
KURS CAŁKI WIELOKROTNE
KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Plan wykładu. Rodzaje pól
Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał
dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
cz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
Siły centralne, grawitacja (I)
Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Atom (cząsteczka niepolarna) w polu elektrycznym
Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do
CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Prawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Siły oporu prędkość graniczna w spadku swobodnym
FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych
Fizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Mechanika ruchu obrotowego
Mechanika uchu obotowego Fizyka I (Mechanika) Wykład VII: Ruch po okęgu Ruch w jednoodnym polu elektycznym i magnetycznym Pawa uchu w układzie obacajacym się Pojęcia podstawowe Układ współzędnych Służy
29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste
9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Atom wodoru w mechanice kwantowej
Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Wykład 5: Dynamika. dr inż. Zbigniew Szklarski
Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,
EGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Fizyka 9. Janusz Andrzejewski
Fizyka 9 Janusz Andzejewski R K Księżyc kążący wokół iei (Rozważania Newtona) Pzyśpieszenie dośodkowe księżyca 4πRK ak = T Wstawiając dane dla obity księżyca: R K = 3.86 10 T = 7. 3dnia 5 k R 6300 = 386000
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
Orbity typu Mołnija. praktyczne zastosowanie mechaniki nieba. Maciej Urbaniak IFM PAN Poznań. Dysk z Nebry, ok pne
Obity typu Mołnija Maciej Ubaniak IFM PAN Poznań Dysk z Neby, ok. 600 pne paktyczne zastosowanie mechaniki nieba Obity typu Mołnija paktyczne zastosowanie mechaniki nieba Obity kepleowskie Zabuzone obity
ZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.
Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Fizyka dla Informatyki Stosowanej
Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1
6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.
Wielomiany Legendre a
grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Siły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
1 Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoia względności (wybane zagadnienia) Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 7 M. Pzybycień (WFiIS AGH) Szczególna Teoia Względności
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y