Fizyka 9. Janusz Andrzejewski
|
|
- Bartosz Sokołowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Fizyka 9 Janusz Andzejewski
2 R K Księżyc kążący wokół iei (Rozważania Newtona) Pzyśpieszenie dośodkowe księżyca 4πRK ak = T Wstawiając dane dla obity księżyca: R K = T = 7. 3dnia 5 k R 6300 = a K = / s oaz a K g = a = g K Ale R więc K R R K g = 9.8 / s Siła pzyciągania iędzy dwoa asai (iędzy ich śodkai) aleje odwotnie popocjonalnie do kwadatu odległości iędzy nii Janusz Andzejewski
3 Pawo powszechnego ciążenia Siła ciążenia istnieje nie tylko poiędzy ieią a księżyce, ale także poiędzy Każdy ciałe a ieią => też usi istnieć poiędzy dowolnyi ciałai o asacj 1 oaz. Opieając się na obsewacjach astonoicznych popzedników Newtona in. Kopenika, Galileusza, Keplea, Newton sfoułował pawo: Każde dwa ciała o asach 1 i pzyciągają się wzajenie siłą gawitacji wpost popocjonalną do iloczynu as, a odwotnie popocjonalną do kwadatu odległości iędzy nii F G = G 1 G współczynnik popocjonalności zwany jest stałą gawitacji Janusz Andzejewski 3
4 Ile wynosi G? 1 F G = g ale F G = G R M G = g R gr G = M M ay Newton założył, że śednia gęstość iei Wynosi ρ=5*10 3 kg/ 3 otzyał G=7.35*10-11 Współcześnie: G = [ N / kg ] Janusz Andzejewski 4
5 Siła gawitacji F 1 = F 1 1 Siła gawitacji jest siłą pzyciągającą. W postaci wektoowej: F G 1 1 = ˆ 1 Siła gawitacji zawsze działa poiędzy ciałai posiadającyi asę, bez wględu na ośodek występującyi poiędzy tyi ciałai. Janusz Andzejewski 5
6 Własności siły gawitacji Siła gawitacji działająca na cząstkę Będącą poza sfeycznie syetycznie Rozłożoną asą jest taka jak by ta Sfeycznie ozłożona asa była Skupiona w śodku kuli Na cząstkę będącą wewnątz sfey o Masie nie działa siła gawitacji Janusz Andzejewski 6
7 Własności siły gawitacji ależność siły gawitacji od odległości od jednoodnej kuli Janusz Andzejewski 7
8 Siła ciężkości Siła ciężkości, pot. cięża siła z jaką ieia lub inne ciało niebieskie pzyciąga dane ciało, w układzie odniesienia związany z powiezchnią ciała niebieskiego. Cięża jest wypadkową sił pzyciągania gawitacyjnego i siły odśodkowej wynikającej z uchu obotowego okeślonego ciała niebieskiego. P = g gdzie wekto g to pzyśpieszenie zieskie. Uwaga: Potocznie asa i cięża ciała są używane jako synoniy. BŁĄD!!! Masa i cięża ciała są to óżne wielkości fizyczne Janusz Andzejewski 8
9 Janusz Andzejewski 9
10 ależność g od szeokości geogaficznej Janusz Andzejewski 10
11 Masa bezwładna i gawitacyjna Siła gawitacji jest popocjonalna do asy ciała jako iay liczebności ateii (np. liczby nukleonów w jądze) i oglibyśy ją wobec tego nazwać asą gawitacyjną. Czy jest to ta saa asa, któa występuje w zasadach dynaiki, a któą nazwijy asą bezwładną? Oznaczy asę gawitacyjną ciała pzez G a jego asę bezładną pzez B. Wtedy asa bezwładna, spadająca swobodnie w pobliżu iei osiągnie pzyspieszenie a 1 : a = G 1B 1 M 1G R 1 B 1 = B a a B Janusz Andzejewski a = G 1G G Czyli: jeśli wszystkie ciała spadają z jednakowy pzyspieszenie, to oba pojęcia as są ównoważne (obie asy są ówne). 1 M G R 11
12 Masa bezwładna i gawitacyjna Póby zbadania zależności iędzy asą bezwładną a gawitacyjną: - Newton stwiedził ówność pzyspieszeń z dokładnością do 1/1000; Roland Eötvösstwiedził to z dokładnością do 10 8 ; R. Dicke(Univesityof Pinceton, USA): Wyniki tych poiaów sugeują, że dla wszystkich substancji asa gawitacyjna jest ówna asie bezwładnej=> zasada ównoważności podstawowe pawo pzyody, opieające się na wynikach doświadczeń. Konsekwencją tej zasady jest nieożność ozóżnienia pzyspieszenia gawitacyjnego od pzyspieszenia np. całego laboatoiu, w któy odbywałyby się poiay punkt wyjścia do ogólnej teoii względności Einsteina. Również kwestia wykładnika w potędze odległości (R) jest zagadnienie, któe stanowi stały pzediot poiaów. - Janusz Andzejewski 1
13 Spadek swobodny h g( h) = G M ( R + h) z => g( h) = GM ( R + h) Pzyśpieszenie z jaki spada ciało na ieię zależy od wysokości Nad powiezchnią ziei. Janusz Andzejewski 13
14 Enegia potencjalna Def. enegii potencjalnej (pzyponienie): E = U = U U = W P z Dla siły gawitacyjnej: FPOT = FG = U = GM 1 K 1 P K P GM R POT eo enegii potencjalnej wybieay w ->. May GM z U = Enegia potencjalna gawitacji jest ujena ponieważ siła gawitacji jest siłą pzyciągającą Jeżeli ziana wysokości jest ała i odbywa się w pobliżu powiezchni iei to K P R U = GM z P P K K GM R ( ) = g( ) = g h P K Janusz Andzejewski K P 14
15 Pzykład U Tot = U 1 + U 13 + U 3 1 = G Watość bezwzględna całkowitej enegii potencjalnej U Tot jest ówna pacy potzebnej do ozsepaowania(ozsunięcia do nieskończoności) układu cząstek. Janusz Andzejewski 15
16 Pzykład asada zachowania enegii: vi GM GM = R v 1 R ax 1 i = GM ax Ciało ucieknie gdy ax, pędkość ucieczki v UC wynosi v UC = GM R Pędkość ucieczki nie zależy od asy uciekającego obiektu. Pędkość ucieczki jest tzw. dugą pędkością kosiczną. Janusz Andzejewski 16
17 Pole (wikipedia) W fizyce pole pzestzenny ozkład pewnej wielkości fizycznej. Inaczej ówiąc w pzestzeni okeślone jest pewne pole, jeżeli każdeu punktowi pzestzeni pzypisano pewną wielkość. Mateatycznie pole -jest po postu funkcją, któa każdeu punktowi pzestzeni pzypisuje daną wielkość. W zależności od chaakteu tej wielkości ówiy o polach: pole skalane gdy każdeu punktowi pzestzeni pzypisana jest pewna wielkość skalana (skala). pole wektoowe gdy każdeu punktowi pzestzeni pzypisany jest pewien wekto. Pzykłade jest pole ciężkości. Janusz Andzejewski 17
18 Rodzaje pól wektoowych Pole nazyway jednoodny, jeśli natężenie we wszystkich jego punktach jest jednakowe. Linie sił w taki polu są postyi ównoległyi. Jeżeli pole ty jest pole sił, to siła działająca na ciała, wynikająca z obecności pola, jest stała w cały obszaze występowania pola. Pole nazyway centalny, jeżeli we wszystkich jego punktach wektoy natężenia skieowane są wzdłuż postych, pzecinających się w jedny punkcie, nieuchoy względe dowolnego układu inecjalnego (punkt ten nazyway śodkie sił). Pole centalne nazyway kulisto-syetyczny, jeśli liczbowa watość wektoa natężenia pola zależy tylko od odległości od śodka sił. Janusz Andzejewski 18
19 Rodzaje pól wektoowych Pole centalne Pole jednoodne Janusz Andzejewski 19
20 Natężenie pola gawitacyjnego Natężenie pola gawitacyjnego zdefiniowane jest jako siła któa działa na póbne ciało uieszczone w polu gawitacyjny do asy tego póbnego ciała. g = FG W pzypadku kuli o asie M, otzyay: GM g = ˆ Widziy, że wekto g() nie zależy od obiektu na któy działa siła (asy ) ale zależy od źódła siły (asa M) i chaakteyzuje pzestzeń otaczającą źódło (wekto ). Oznacza to, że asa M stwaza w punkcie takie waunki, że uieszczona w ni asa odczuje działanie siły. Inaczej ówiąc asie M pzypisujey obsza wpływu (działania), czyli pole. Janusz Andzejewski 0
21 asada supepozycji asada supepozycji pól (nakładania się pól):pzy nałożeniu się kilku pól (np. ciążenia), natężenie pola wypadkowego ówna się suie wektoowej natężeń wszystkich tych pól. d a g a O g O = 0 b c Pzykład: w ogach kwadatu ay 4 takie sae asy. Watość natężenia pola od każdej z tych as w śodku kwadatu O jest takie sao. Wynika z tego że natężenie pola gawitacyjnego w O wynosi ERO g O = g a + g b + g c + g d Janusz Andzejewski 1
22 Pole skalane Pola chaakteyzuje się ównież pewną wielkością skalaną, zwaną potencjałe pola. Równy jest on stosunkowi enegii potencjalnej punktu ateialnego do jego asy: V = U = EP W pzypadku pola gawitacyjnego pojedynczego punktu ateialnego o asie M, (a także w pzypadku asy sfeycznie syetycznej) potencjał tego pola wyaża się wzoe: GM V = gdzie odległość od śodka asy M. Jednostką potencjału pola gawitacyjnego jest [J/kg]. Janusz Andzejewski
23 Relacje poiędzy Siła gawitacyjna F G i potencjał pola gawitacyjnego V są związane zależnością: F G V V V =,, = gad( V ) x y z W szczególności: g ( ) = gad ( V ( ) ) Enegia potencjalna U ciała póbnego o asie znajdującego się w punkcie w polu gawitacyjny ciała o asie M to E P = U ( ) = V ( ) Paca potzebna do pzesunięcia ciała póbnego o asie z punktu 1 do punktu pzeciwko sile ciążenia jest ówna iloczynowi asy tego ciała i óżnicy potencjałów iędzy tyi punktai: W ( ) 1 = V = V V1 Janusz Andzejewski 3
24 Pzykład d c Cztey jednakowe asy każda. Ile wynosi Potencjał w śodku kwadatu o boku a? a V a O b Potencjał w pkt. O od każdej asy jest taki sa, wynosi G V a = = Vb = Vc = V a d Kozystając z supepozycji ay: V = V + V + V + V 4 V G = 4 a O a b c d = a = 4 G a Janusz Andzejewski 4
25 Potencjał a natężenie Natężenie pola linie po któych się oże pouszać póbna asa Jeśli połączyć iejsca o ty say potencjale otzyay powiezchnie izopotencjalne. Janusz Andzejewski 5
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Bardziej szczegółowoFizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Bardziej szczegółowoWykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie
Bardziej szczegółowoGrawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r
Wykład z fizyki Piot Posykiewicz 113 Ponieważ, ważne są tylko ziany enegii potencjalnej, ożey pzyjąć, że enegia potencjalna jest ówna zeo w dowolny położeniu. Powiezchnia iei oże być odpowiedni wyboe w
Bardziej szczegółowoPole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
Bardziej szczegółowover grawitacja
ve-18.10.07 gawitacja początki Galileusz 1564-164 układ słoneczny http://www.aachnoid.co/gavitation/sall.htl pawa Keplea 1. obity planet kążących wokół słońca są elipsai ze słońce w ognisku Johannes Keple
Bardziej szczegółowoZasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
Bardziej szczegółowoSiła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Bardziej szczegółowoWykład 6. F m 1 m 2 R T. a = m/s 2
. ąkol-notatki do Wykładu z izyki Wykład 6 6. Ciążenie powszechne (gawitacja) 6. Pawo powszechnego ciążenia Newton - 665 spadanie ciał. Skoo istnieje siła pzyciągania poiędzy dowolny ciałe i ieią, to usi
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych
Bardziej szczegółowoFizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
Bardziej szczegółowocz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Bardziej szczegółowoPrawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
Bardziej szczegółowoNa skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Bardziej szczegółowoPlan wykładu. Rodzaje pól
Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
Bardziej szczegółowoNierelatywistyczne równania ruchu = zasady dynamiki Newtona
DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
Bardziej szczegółowo20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Bardziej szczegółowoPęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Bardziej szczegółowoZasady zachowania, zderzenia ciał
Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia
Bardziej szczegółowoSiły centralne, grawitacja (I)
Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,
Bardziej szczegółowoTeoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Bardziej szczegółowoXXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,
XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika
Bardziej szczegółowoEnergia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 5 3.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 5 3.XI.016 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Układ inecjalny Zasada bezwładności Każde ciało twa w swy stanie
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone
Bardziej szczegółowoPędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
Bardziej szczegółowoGuma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowo1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Bardziej szczegółowoWPROWADZENIE. Czym jest fizyka?
WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych
Bardziej szczegółowoROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Bardziej szczegółowo= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Bardziej szczegółowoElektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
Bardziej szczegółowoRuch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Bardziej szczegółowoWykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Bardziej szczegółowoLITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.
LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoWIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH
WITUALNE LABOATOIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY POGAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infoatyka Gawitacja Gzegoz F. Wojewoda Człowiek - najlepsza
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p
Bardziej szczegółowoE4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW
4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Bardziej szczegółowoWIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH
WITULNE LBOTOI FIZYCZNE NOWOCZESNĄ METODĄ NUCZNI INNOWCYJNY POGM NUCZNI FIZYKI W SZKOŁCH PONDGIMNZJLNYCH Moduł dydaktyczny: fizyka - infoatyka Gawitacja Gzegoz F. Wojewoda Człowiek - najlepsza inwestycja
Bardziej szczegółowoCoba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
Bardziej szczegółowo- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Bardziej szczegółowoMoment pędu w geometrii Schwarzshilda
Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.
Bardziej szczegółowoPola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Bardziej szczegółowoPRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoKonspekt lekcji. I. Metryczka konspektu: II. Plan lekcji:
Konspekt lekcji I. Metycka konspektu: Auto: Sebastian ajos. Wiek ucniów: piewsa klasa ginaju. Teat: Siły powsecnego ciążenia. Cel ogólny: Uświadoienie ucnio, że siły powodujące spadanie ciał na powiecnię
Bardziej szczegółowoWykład 5: Dynamika. dr inż. Zbigniew Szklarski
Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Bardziej szczegółowocz.1 dr inż. Zbigniew Szklarski
ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay
Bardziej szczegółowoXXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Bardziej szczegółowoZagadnienie dwóch ciał oddziałujących siłą centralną Omówienie ruchu ciał oddziałujących siłą o wartości odwrotnie proporcjonalnej do kwadratu ich
Zagadnienie dwóch ciał oddziałujących iłą centalną Oówienie uchu ciał oddziałujących iłą o watości odwotnie popocjonalnej do kwadatu ich odległości F F Siła centalna F F F F Dla oddziaływania gawitacyjnego
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Bardziej szczegółowoPole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoia względności (wybane zagadnienia) Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 7 M. Pzybycień (WFiIS AGH) Szczególna Teoia Względności
Bardziej szczegółowoGrawitacja. W Y K Ł A D IX. 10-1 Prawa Keplera.
Wykład z fizyki, Piot Posmykiewicz 106 W Y K Ł A D IX Gawitacja. Siły gawitacyjne są najsłabsze z pośód czteech podstawowych sił pzyody. Są całkowicie zaniedbywalne w oddziaływaniach między atomami i nukleonami
Bardziej szczegółowoSiła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
Bardziej szczegółowoXIX. PRAWO COULOMBA Prawo Coulomba
XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny
Bardziej szczegółowoKrystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4
Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012
Bardziej szczegółowoMechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne.
Więzy z tacie Mechanika oólna Wykład n Zjawisko tacia. awa tacia. awa tacia statyczneo Couloba i Moena Siła tacia jest zawsze pzeciwna do występująceo lub ewentualneo uchu. Wielkość siły tacia jest niezależna
Bardziej szczegółowoEnergia w geometrii Schwarzshilda
Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą
Bardziej szczegółowoBRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Bardziej szczegółowoIV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
Bardziej szczegółowoRuch jednostajny po okręgu
Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość
Bardziej szczegółowoWyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona
Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,
Bardziej szczegółowoWykład 17. 13 Półprzewodniki
Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa
Bardziej szczegółowoSKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE
Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski
Bardziej szczegółowo14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Bardziej szczegółowoLista zadań nr 1 - Wektory
Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Bardziej szczegółowoGeodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018
Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24
Bardziej szczegółowoEnergia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Bardziej szczegółowoWYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Bardziej szczegółowoPrawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
Bardziej szczegółowoPRACA I ENERGIA. 1. Praca stałej siły. 2. Praca zmiennej siły. 3. Moc: szybkość wykonywania pracy. 4. Energia kinetyczna
PRACA I ENERGIA 1. Paca stałej siły. Paca zmiennej siły 3. Moc: szybkość wykonywania pacy 4. Enegia kinetyczna 5. Siły zachowawcze i enegia potencjalna 6. Zasada zachowania enegii mechanicznej 7. Enegia
Bardziej szczegółowoElektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma
A. Sieadzki I PW Elektostatyka Wykład Wocław Univesity of Technology 3-3- Ogień Świętego Elma Ognie świętego Elma (ognie św. Batłomieja, ognie Kastoa i Polluksa) zjawisko akustyczno-optyczne w postaci
Bardziej szczegółowo5. Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
5. Dynaika uchu postępowego, uchu punktu ateialnego po okęgu i uchu obotowego były sztywnej Wybó i opacowanie zadań 5..-5..0; 5..-5..6 oaz 5.3.-5.3.9 yszad Signeski i Małgozata Obaowska. Zadania 5..-5..4
Bardziej szczegółowoXI. RÓWNOWAGA I SPRĘŻYSTOŚĆ
XI. RÓWNOWAGA I SPRĘŻYSTOŚĆ 11.1. Równowaga Ciało sztywne pozostające w spoczynku jest w ównowadze statycznej. Jak wiemy, uch postępowy ciała opisuje duga zasada dynamiki Newtona, któą za pomocą pędu ciała
Bardziej szczegółowoPOLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia
Bardziej szczegółowoFizyka dla Informatyki Stosowanej
Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady
Bardziej szczegółowo11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Bardziej szczegółowoPRĘDKOŚCI KOSMICZNE OPRACOWANIE
PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Bardziej szczegółowoMagnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Bardziej szczegółowoPodstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Bardziej szczegółowoRys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1
6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Bardziej szczegółowoPRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Bardziej szczegółowo