Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018"

Transkrypt

1 Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

2 Literatura 1 Geodezja współczesna - Kazimierz Czarnecki, PWN Geodezja fizyczna - Adam Łyszkowicz, Wyd. Uniwersytetu Warmińsko-Mazurskiego w Olsztynie Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka - Marcin Barlik, Andrzej Pachuta, Oficyna Wydawnicza Politechniki Warszawskiej Physical Geodesy - Martin Vermeer, mvermeer/mpk-en.pdf Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

3 Model geopotencjału V = GM r [ 360 n ( a ) n 1 + ( Cnm cos(mλ) + r S nm sin(mλ) ) ] Pnm(cos θ) n=2 m=0 Zbiór współczynników C nm i S nm od n = 2 do n = n MAX Wartość geocentrycznej stałej grawitacyjnej GM Czynnik skalujacy a (długość półosi równikowej) Model pływów stałych (majacych wpływ na współczynnik C 20 ) Przy wyliczaniu współczynników modelu wykorzystuje się między innymi: dane grawimetryczne (naziemne i satelitarne) parametry orbit sztucznych satelitów i Księżyca Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

4 Potencjał siły odśrodkowej: V = 1 2 ω2 r 2 xy = 1 2 ω2 (x 2 + y 2 ) = 1 2 ω2 r 2 cos 2 φ a od = V = (ω 2 x, ω 2 y) = ω 2 r xy Całkowity potencjał siły ciażenia: [ W = GM n ( a ) n 1 + ( Cnm cos(mλ) + r r S nm sin(mλ) ) ] Pnm(cos θ) n=2 m=0 + ω2 r 2 2 cos2 φ Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

5 Potencjał siły odśrodkowej nie jest funkcja harmoniczna: Zatem laplasjan: [ 2 1 x 2 2 y 2 ] 2 ω2 (x 2 + y 2 ) = ω 2 [ ] 1 2 ω2 (x 2 + y 2 ) = ω 2 [ ] 1 2 ω2 (x 2 + y 2 ) = 2ω 2 0 Funkcjami harmonicznymi sa funkcje kuliste występujace w geopotencjale: 1 r Pnm(cos θ) cos(mλ), 1 Pnm(cos θ) sin(mλ). n+1 rn+1 Laplasjan we współrzędnych sferycznych (matematyczne: θ = π/2 φ): u = 2 u r + 2 u 2 r r u r 2 θ + ctgθ u 2 r 2 θ u r 2 sin 2 θ λ 2 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

6 Potencjał grawitacyjny Ziemi V jako suma funkcji kulistych jest w całości funkcja harmoniczna. Zatem opisuje pole grawitacyjne Ziemi na zewnatrz mas. Dla puktów wewnatrz mas (pod powierzchnia Ziemi w głab do poziomu morza) funkcja może być niepoprawna. Wykonuje się matematyczne jej przedłużenie z obszaru powyżej mas do obszaru wewnatrz. Jeśli operacja przedłużania funkcji jest poprawnie wykonana, to możliwe jest wyznaczenie geoidy - powierzchni, dla której W = const = W 0 W modelu EGM96 wysokość geoidy wyznacza się poprzez wyznaczenie anomalii wysokości oraz anomalii Bouguera: N(φ, λ) = N 0 + ζ(φ, λ, r) + g BA(φ, λ) H(φ, λ) γ Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

7 W miejscach, gdzie nie wykonano naziemnych pomiarów wysokości, modele geoidy wraz z pomiarami GPS pozwalaja na wyznaczenie wysokości (ortometrycznych). Dane z GPS oraz pomiarów naziemnych pozwalaja na weryfikację poprawności i dokładności modelu geopotencjału. Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

8 Geoida. Źródło: NASA / University of Texas Center for Space Research Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

9 Zagadnienie Dirichleta dla potencjału normalnego: Potencjał normalny Geoida - powierzchnia poziomowa, ekwipotencjalna (która jest najbliższa średniemu poziomowi mórz). Kierunek linii pionu jest kierunkiem siły ciężkości. Jest on prostopadły do powierzchni ekwipotencjalnej (na poziomie morza - do geoidy) Teoretycznym odpowiednikiem geoidy jest powierzchnia elipsoidy obrotowej (elipsoida odniesienia jest elipsoida najbliższa geoidzie) Czy istnieje taka funkcja, która spełniałaby równanie Laplace a na zewnatrz elipsoidy obrotowej, a na jej powierzchni byłaby stała? Elipsoida teoretycznie zawierałaby cała masę Ziemie, a wartość szukanego potencjału na jej powierzchni U 0 równa by była wartości potencjału geoidy W 0. Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

10 Współrzędne geocentryczne, geodezyjne i elipsoidalne Szerokości: φ geocentryczna ϕ geodezyjna Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

11 współrzędne elipsoidalne (u, ϑ, λ) lub (u, β, λ) Mimośród liniowy E: E 2 = a 2 b 2 ( ) 2 E 2 = u2 + E 2 u 2 E jest parametrem układu współrzędnych Jeśli mała półoś u ( = b, to duża u2 ) automatycznie = + E 2 = ( b2 ) + a 2 b 2 = a Punkt P należy do elipsy o półosiach u 2 + E 2 oraz u. Odpowiedni punkt P należy do okragu o promieniu u 2 + E 2. Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

12 Zwiazki między współrzędnymi λ - wspólna wielkość (długość geograficzna) β - szerokość zredukowana; φ - szerokość geocentryczna; ϕ - szerokość geodezyjna tan β = b a tan ϕ = a b tan φ P : (u, β, λ) (x, y, z) x = u 2 + E 2 cos β cos λ y = u 2 + E 2 cos β sin λ z = u sin β Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

13 Zagadnienie Dirichleta dla potencjału normalnego we współrzędnych elipsoidalnych Szukana jest funkcja U(u, β, λ) taka, że U U = U ω2 r 2 2 cos2 φ spełnia równanie Laplace a (we współrzędnych elipsoidalnych) U(u, β, λ) = const na powierzchni elipsoidy obrotowej parametry elipsoidy w systemie GRS 80: a = m GM = J 2 = m 3 s 2 ω = rad s 1 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

14 Rozwiazanie zagadnienia Dirichleta we współrzędnych elipsoidalnych Potencjał (z uwzględnieniem efektu siły odśrodkowej) ma postać: U = U(u, β) = GM E arctg E ( u + ω2 q 2 a2 sin 2 β 1 ) ( + ω2 u 2 + E 2) cos 2 β q (brak zależności od λ - elipsoida obrotowa) U 0 = U(u = b) = = GM E arctg E b + ω2 3 a2 = , 85 m 2 /s 2 q = q(u, E) = 1 2 [(1 + 3 u2 E 2 ) arctg E u 3 u ], q 0 = q(u = b) E Zatem istnieje potencjał, którego jedna z powierzchni ekwipotencjalnych (poziomowych) jest elipsoida odniesienia. Jest to tzw. potencjał normalny. Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

15 Przyspieszenie normalne na powierzchni elipsoidy Na podstawie wzoru we współrzędnych eliptycznych: γ = U h γ = aγ b sin 2 β + bγ a cos 2 β a2 sin 2 β + b 2 cos 2 β wzór Somigliana γ = aγa cos2 ϕ + bγ b sin 2 ϕ a2 cos 2 ϕ + b 2 sin 2 ϕ γ a, γ b - wartości przyspieszeń odpowiednio na równiku i biegunach. Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

16 We współrzędnych geograficznych dla modelu GRS80 wzór dajacy dokładność 1µms 2 = 0, 1mGal: GRS80 ( ) γ = 9, , sin 2 ϕ 0, sin 2 2ϕ ms 2 W systemie WGS 1984: WGS 84 γ = 9, , sin2 ϕ sin 2 ϕ ms 2 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

17 Rozwiazanie zagadnienia Dirichleta we współrzędnych sferycznych Spośród funkcji kulistych: wybieramy: 1 r Pnm(cos θ) cos(mλ), 1 Pnm(cos θ) sin(mλ). n+1 rn+1 m = 0 ze względu na symetrię obrotowa względem osi Z (osi obrotu Ziemi) n 2n - tylko funkcje Legendre a o parzystym indeksie maja symetrię równikowa (tzn. potencjał jest taki sam dla szerokości północnych i południowych) W ten sposób otrzymujemy łatwiejszy w użyciu wzór, gdzie sumowanie w praktyce wykonuje się tylko do n = 4 [ ] U = GM ( a ) 2n 1 + C2n P 2n (cos θ) + 1 r r 2 ω2 r 2 sin 2 θ n=1 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

18 Współczynniki rozkładu mas: U = GM r [ 1 Wartości współczynników C 2n J 2n ] ( a ) 2n J2n P 2n (cos θ) + 1 r 2 ω2 r 2 sin 2 θ n=1 J 2 = 1082, J 4 = 2, J 6 = 0, J 8 = 0, Dla porównania: dla pola rzeczywistego Ziemi, na podstawie pomiarów satelitarnych otrzymano: J 3 = 2, , J 4 = 1, , J 5 = 0, , J 6 = 0, C n = Jn 2n + 1 EGM96 EGM96: brak symetrii względem równika; powolna zbieżność szeregu. Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

19 Potencjał zakłócajacy W - potencjał rzeczywistej siły ciężkości Ziemi (siły grawitacji i siły odśrodkowej) W 0 - wartość potencjału na geoidzie U - potencjał normalny (elipsoidy) U 0 - wartość potencjału normalnego na elipsoidzie odniesienia U 0 = W 0 Potencjał zakłócajacy (w danym punkcie) T = W U W szczególności w dowolnym punkcie P na geoidzie: T P = W 0 U P Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

20 φ = π 2 θ, W = GM r Potencjał zakłócajacy z modelu geopotencjału cos θ = sin φ [ n ( a ) n 1 + ( Cnm cos(mλ) + r S nm sin(mλ) ) ] Pnm(sin φ) ω2 r 2 cos 2 φ n=2 m=0 [ ] U = GM ( a ) 2n 1 J2n P 2n (sin φ) + 1 r r 2 ω2 r 2 cos 2 φ n=1 Potencjał zakłócajacy: T(r, φ, λ) = W U = GM r n ( a ) n ( C nm cos(mλ) + r S nm sin(mλ) ) Pnm(sin φ) n=2 m=0 gdzie np. C k,0 = C k,0 (EGM 96) ( C k,0 (GRS 80)) dla k = 2, 4, 6, 8. J k C k,0 (GRS 80) = 2k + 1 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

21 Wysokość geoidy f (x P ) f (x Q ) + f (x Q ) (x P x Q ), pochodna normalna potencjału = minus wartość przyspieszenia U P U Q + U n N Q U Q = U 0 = W 0, U n = γ Q U P W 0 = γ Q N T P = γ Q N Wysokość geoidy - wzór Brunsa N = T P γ Q Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

22 Anomalia grawimetryczna g - wektor rzeczywistego przyspieszenia siły ciężkości, określony na podstawie: pomiarów modelu geopotencjału g = W γ - wektor przyspieszenia normalnego γ = U U 0 = W 0 - różne powierzchnie, różne gradienty Anomalia grawimetryczna (skalar!): g = g P γ Q Inne oznaczenie anomalii: Ag Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

23 Podstawowe równanie geodezji fizycznej γ P γ Q + γ n N Q Dla anomalii grawimetrycznej: ( g = g P γ Q g P γ P γ ) n N = (g P γ P ) + γ Q n N Q ( W = n U ) P n + γ P n N = T Q n + γ P n TP Q różnica pochodnych kierunkowych w punktach P i Q jest zaniedbywalna - można pominać indeks (lub zastępuje się znakiem pochodnej względem wysokości - np.: U ) H wiadomo, że wartość T dotyczy punktu na geoidzie, a wartość γ - dla odpowiedniego punktu na elipsoidzie odniesienia, więc znowu pomijamy indeksy γ Q g = T n + 1 γ γ n T Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

24 W przybliżeniu sferycznym pochodna w kierunku normalnym, to pochodna po r, U = GM r γ = U r = GM r 2 γ r = 2 GM r 3 = 2 r γ podstawowe równanie geodezji fizycznej (inaczej podstawowe równanie różniczkowe grawimetrii): W przybliżeniu sferycznym: g = T n + 1 γ γ n T g = T r 2 r T Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada / 24

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Anomalie grawimetryczne Redukcje i poprawki Liliana Bujkiewicz WPPT PWr Liliana Bujkiewicz (WPPT PWr) Geodezja fizyczna i geodynamika 1 / 10 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Powtórka Dr inż. Liliana Bujkiewicz 17 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca 2017 1 / 26 Literatura 1 Geodezja współczesna -

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Odchylenie pionu Dr inż. Liliana Bujkiewicz 17 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca 2017 1 / 24 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018 Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24

Bardziej szczegółowo

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Wstęp. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 27 maca 2017 D inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 27 maca 2017 1

Bardziej szczegółowo

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 : Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Kod modułu Geodezja wyższa i astronomia geodezyjna. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy)

Kod modułu Geodezja wyższa i astronomia geodezyjna. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja wyższa i astronomia geodezyjna Nazwa modułu w języku angielskim

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański Wydział Geodezji i Kartografii Politechniki Warszawskiej Motywacja

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja globalna i podstawy astronomii Nazwa modułu w języku angielskim

Bardziej szczegółowo

ostatnia aktualizacja 4 maja 2015

ostatnia aktualizacja 4 maja 2015 ostatnia aktualizacja 4 maja 2015 strona 1 Ziemia nie jest sztywna! Jest elastyczna, lepka, sprężysta... strona 2 punktu Początkowy potencjał w punkcie A W A strona 3 punktu Początkowy potencjał w punkcie

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Geodezja wyższa Rok akademicki: 2030/2031 Kod: DGK-1-405-n Punkty ECTS: 6 Wydział: Geodezji Górniczej i Inżynierii Środowiska Kierunek: Geodezja i Kartografia Specjalność: - Poziom studiów:

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS

Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS Wiesław Graszka naczelnik

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,

Bardziej szczegółowo

WYBRANE ELEMENTY GEOFIZYKI

WYBRANE ELEMENTY GEOFIZYKI YBRANE ELEMENTY GEOFIZYKI Ćwiczenie 4: Grawimetria poszukiwawcza. Badanie zaburzenia grawitacyjnego oraz zmian drugich pochodnych gradientowych. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W celu ujednolicenia wyników pomiarów geodezyjnych, a co za tym idzie umożliwienia tworzenia

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Podstawy geodezji. dr inż. Stefan Jankowski

Podstawy geodezji. dr inż. Stefan Jankowski Podstawy geodezji dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Systemy i układy odniesienia System odniesienia (reference system) to zbiór zaleceń, ustaleń, stałych i modeli niezbędnych do określenia

Bardziej szczegółowo

UKŁADY GEODEZYJNE I KARTOGRAFICZNE

UKŁADY GEODEZYJNE I KARTOGRAFICZNE UKŁADY GEODEZYJNE I KARTOGRAFICZNE Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu Model ZIEMI UKŁAD GEODEZYJNY I KARTOGRAFICZNY x y (f o,l o ) (x o,y o ) ZIEMIA

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo

Wykład 2 Układ współrzędnych, system i układ odniesienia

Wykład 2 Układ współrzędnych, system i układ odniesienia Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

Obraz Ziemi widzianej z Księżyca

Obraz Ziemi widzianej z Księżyca Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r.

Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r. Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia 10.01.2008r. ROZPORZĄDZENIE RADY MINISTRÓW z dnia 2008 r. w sprawie państwowego systemu odniesień przestrzennych Na podstawie art.

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia

Bardziej szczegółowo

Quasi-geoida idealnie dopasowana czy idealnie grawimetryczna

Quasi-geoida idealnie dopasowana czy idealnie grawimetryczna Katedra Geodezji i Astronomii Geodezyjnej Wydział Geodezji i Kartografii Politechnika Warszawska Quasi-geoida idealnie dopasowana czy idealnie grawimetryczna Tomasz Olszak, Dominik Piętka, Ewa Andrasik

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Part I. Położenie obserwatora na powierzchni Ziemi. Astronomia sferyczna Wykład 5: WSPÓŁRZEDNE GEOCENTRYCZNE Przejście topo- geocentrum i odwrotnie

Part I. Położenie obserwatora na powierzchni Ziemi. Astronomia sferyczna Wykład 5: WSPÓŁRZEDNE GEOCENTRYCZNE Przejście topo- geocentrum i odwrotnie Astronomia sferyczna Wykład 5: WPÓŁRZEDNE GEOENTRYZNE Przejście topo- geocentrum i odwrotnie Tadeusz Jan Jopek Part I Instytut Obserwatorium Astronomiczne, UAM emestr II (Uaktualniono 5.04.03) Przybliżenia

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

LOKALNY UKŁ AD ORIENTACJI Ż YROSKOPU LASEROWEGO I JEGO DOKŁ ADNOŚĆ

LOKALNY UKŁ AD ORIENTACJI Ż YROSKOPU LASEROWEGO I JEGO DOKŁ ADNOŚĆ ZESZYTY NAUOWE AADEMII MARYNARI WOJENNEJ RO XLVII NR 1 (164) 2006 Tadeusz Dą browski LOALNY UŁ AD ORIENTACJI Ż YROSOPU LASEROWEGO I JEGO DOŁ ADNOŚĆ STRESZCZENIE W artykule przedstawiono koncepcję kinematycznego

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych Załącznik nr 1 Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów Tabela 1. Parametry techniczne geodezyjnego układu odniesienia PL-ETRF2000 Parametry techniczne geodezyjnego

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

WYBRANE ELEMENTY GEOFIZYKI

WYBRANE ELEMENTY GEOFIZYKI WYBRANE ELEMENTY GEOFIZYKI Ćwiczenie 3: Wyznaczanie współczynników TEC (Total Electron Content) i ZTD (Zenith Total Delay) z obserwacji GNSS. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej

Bardziej szczegółowo

ANALIZA I MODELOWANIE POLA CIĘŻKOŚCI ZIEMI

ANALIZA I MODELOWANIE POLA CIĘŻKOŚCI ZIEMI ANALIZA I MODELOWANIE POLA CIĘŻKOŚCI ZIEMI Wykład 5: Grawimetria dynamiczna prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej i Nawigacji Grawimetria dynamiczna Grawimetria dynamiczna (satelitarna)

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Geodezja, Teoria i Praktyka, Tom 1, Edward Osada kod produktu: 3700 kategoria: Kategorie > WYDAWNICTWA > KSIĄŻKI > GEODEZJA

Geodezja, Teoria i Praktyka, Tom 1, Edward Osada kod produktu: 3700 kategoria: Kategorie > WYDAWNICTWA > KSIĄŻKI > GEODEZJA Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

PRACE INSTYTUTU GEODZEJI I KARTOGRAFII 2008, tom LIV, zeszyt 112

PRACE INSTYTUTU GEODZEJI I KARTOGRAFII 2008, tom LIV, zeszyt 112 PRACE INSTYTUTU GEODZEJI I KARTOGRAFII 008, tom LIV, zeszyt 11 GRAŻYNA KLOCH Instytut Geodezji i Kartografii JAN KRYŃSKI Instytut Geodezji i Kartografii IMPLEMENTACJA DŁUGO-, ŚREDNIO- I KRÓTKOLOWYCH SKŁADOWYCH

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Walidacja globalnych modeli geopotencjału pochodzących z misji satelitarnych w oparciu o naziemne dane grawimetryczne

Walidacja globalnych modeli geopotencjału pochodzących z misji satelitarnych w oparciu o naziemne dane grawimetryczne Walidacja globalnych modeli geopotencjału pochodzących z misji satelitarnych w oparciu o naziemne dane grawimetryczne Wydział Geodezji i Kartografii Politechniki Warszawskiej Katedra Geodezji i Astronomii

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Lp. Promotor Temat Dyplomant 1. Dr inż. A. Dumalski. Badanie dokładności użytkowej niwelatora cyfrowego 3. Dr inż. A. Dumalski

Lp. Promotor Temat Dyplomant 1. Dr inż. A. Dumalski. Badanie dokładności użytkowej niwelatora cyfrowego 3. Dr inż. A. Dumalski 2009/2010 propozycje tematów prac dyplomowych na studiach stacjonarnych magisterskich II stopnia realizowanych w Instytucie Geodezji Specjalność geodezja gospodarcza Olsztyn Limit 18 Lp. Promotor Temat

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI. Rola głównych perturbacji.

RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI. Rola głównych perturbacji. RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI Rola głównych perturbacji. Ruch nieperturbowany keplerowski Ruch nieperturbowany Ruch keplerowski Ruch perturbowany Ruch perturbowany Ruch perturbowany Rozwiązanie

Bardziej szczegółowo

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ Karol DAWIDOWICZ Jacek LAMPARSKI Krzysztof ŚWIĄTEK Instytut Geodezji UWM w Olsztynie XX Jubileuszowa Jesienna Szkoła Geodezji, 16-18.09.2007

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

00013 Mechanika nieba A

00013 Mechanika nieba A 1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

Spis treści. Przedmowa Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym

Spis treści. Przedmowa Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym Spis treści Przedmowa................................................................... 11 1. Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym......................................................................

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie

Bardziej szczegółowo

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Szymon Malinowski Metody opisu ruchu płynu, skale ruchu. Siły działające na cząstkę (elementarną objętość) powietrza. Równanie ruchu, analiza skali,

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

GeoPrzeglądanie od geoidy do Google Earth

GeoPrzeglądanie od geoidy do Google Earth GeoPrzeglądanie od geoidy do Google Earth Plan wykładu Podstawowe pojęcia geodezji Wyznaczanie pozycji w terenie Google Earth jako przykład GeoPrzeglądarki Zastosowanie języka KML do tworzenia wirtualnych

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

Geodezja i geodynamika - trendy nauki światowej (1)

Geodezja i geodynamika - trendy nauki światowej (1) - trendy nauki światowej (1) Glob ziemski z otaczającą go atmosferą jest skomplikowanym systemem dynamicznym stały monitoring tego systemu interdyscyplinarność zasięg globalny integracja i koordynacja

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Wielomiany Legendre a

Wielomiany Legendre a grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo