Wykład 5: Dynamika. dr inż. Zbigniew Szklarski
|
|
- Stanisław Rutkowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl
2 Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu, to jego uch jest możliwy jedynie pod wpływem działania sił zewnętznych. Z wyjątkiem ciał niebieskich stanem nomalnym jest stan spoczynku. Każde ciało o twa w swym stanie: spoczynku lub uchu postoliniowego i jednostajnego, jeśli siły pzyłożone one nie zmuszają ciała a do zmiany tego stanu Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka
3 Pincipia Mathematica Philosophiae Natualis 1687 zasady dynamiki Istnieje układ inecjalny tzn. układ odniesienia, w któym ciało, na któe nic nie działa, spoczywa lub pousza się bez pzyspieszenia. Zasada bezwładności Newtona jest postulatem istnienia układu inecjalnego. Jeśli istnieje jeden układ inecjalny, to każdy inny układ pouszający się względem niego z pędkościąv = const jest też układem inecjalnym; istnieje więc nieskończenie wiele układów inecjalnych Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 3
4 Duga zasada dynamiki Niezeowa wypadkowa sił zewnętznych działających na ciało nadaje ciału pzyspieszenie o kieunku i zwocie zgodnym z kieunkiem i zwotem siły wypadkowej oaz watości wpost popocjonalnej do watości tej siły a odwotnie popocjonalnej do masy ciała. a = F wyp m 2 d stąd F w = m 2 Czyli jeśli znamy ozkład sił i masę ciała dt oaz waunki początkowe dla położenia i pędkości, to ozwiązując ównanie uchu otzymamy układ tzech ównań skalanych, opisujących zachowanie ciała w czasie: y= y(t z= z(t) x= x(t) ) Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 4
5 Pzykłady ównań Newtona: m m m d dt d dt d dt = = = d q dt qe mg B Ruch ładunku w polu magnetycznym Ruch ładunku w polu elektycznym Ruch masy w polu gawitacyjnym Uogólniona II zasada dynamiki: Jeżeli m = const to F w = m dv dt = d ( mv) dt = dp dt Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 5
6 Tzecia zasada dynamiki Newtona Każdemu działaniu (akcji) towazyszy pzeciwdziałanie (eakcja) F BA F AB Siła działająca na ciało A ze stony ciała B (F AB ) jest ówna sile działającej na ciało B ze stony ciała A (F BA ). Siły te występują paami. Czy one się ównoważą? Nie! Każda siła działa na inne ciało! Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 6
7 Pzykład: Z wysokości h nad ziemią spada swobodnie kula z gliny. Na wysokości h/2 tafił ją w śodek, pouszający poziomo się z pędkością V 0 pocisk, któy utkwił w kuli. Masa pocisku jest k = 5 azy mniejsza od masy kuli. Oblicz szybkość kuli w momencie upadku na ziemię. Dane g Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 7
8 Pzykłady istotnych sił zeczywistych Siła gawitacji (ciężkości) Siła nacisku/eakcji Siła napężenia Siła tacia (opou) F T Siła eakcji podłoża R Q Siła dośodkowa Siła gawitacji działająca na pudło Siła nacisku działająca na podłogę Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 8
9 Tacie Źódłem siły tacia jest oddziaływanie pomiędzy ciałem a powiezchnią, po któej jest wpawiane w uch. Tacie jest powodowane pzez oddziaływanie elektomagnetyczne między cząstkami/atomami stykających się ciał. Siła tacia jest sumą wektoową sił działających między atomami na powiezchni jednego i dugiego ciała. Powiezchnia zeczywistego kontaktu mikoskopowego obu ciał może być nawet azy mniejsza od powiezchni pozonego makoskopowego kontaktu Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 9
10 Tacie zewnętzne wewnętzne poślizgowe toczne statyczne kinetyczne Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 10
11 Właściwości siły tacia 1. Jeśli ciało się nie pousza, to siła tacia statycznego ównoważy składową siły ównoległą do powiezchni. Siła tacia statycznego dopasowuje się do siły usiłującej wpawić ciało w uch. 2. Maksymalna watość siły tacia statycznego dana jest wzoem T Smax = µ s N, gdzie µ s jest współczynnikiem tacia statycznego, N jest watością siły nacisku - postopadłej do powiezchni, ównej sile eakcji działającej na ciało. 3. Jeżeli watość składowej siły F, ównoległej do powiezchni pzekacza watość T Smax to ciało zaczyna się ślizgać. Watość siły tacia gwałtownie wówczas maleje do T k = µ k N, gdzie jest µ k jest współczynnikiem tacia kinetycznego Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 11
12 Pzykładowe współczynniki tacia: Mateiał Wsp. tacia statycznego µ s Wsp. tacia kinetycznego µ k stal / stal po dodaniu smau do stali metal / lód opona / sucha nawiezchnia opona / moka nawiezchnia HWR,1 Rys Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 12
13 Tacie toczne wynika ono z baku symetii oddziaływań w obszaze styku, siła eakcji podłoża nie pzypada w miejscu działania nacisku lecz jest pzesunięta w kieunku toczenia i jest odchylona od pionu, pzy toczeniu twozą się i ozywają połączenia mostkowe (adhezyjne) między ciałami (ważne w F1!), następuje defomacja plastyczna w miejscu styku ciał. opona z większą zawatością siaki mniejsze opoy toczenia! wpływ ugięcia ścian opony - szesze mają mniejsze ugięcie - mniejsze opoy guba zeźba bieżnika większy opó większy ozmia koła mniejszy opó ciśnienie w oponie większe, to mniejszy opó ale staty enegii pzy pzeskoku nad nieównościami Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 13
14 Tacie wewnętzne lepkość Lepkość to opó, powstający pomiędzy wastwami (stugami) cieczy lub gazu pzemieszczającymi się względem siebie. Rodzaj pzepływu okeśla liczba Reynoldsa: vρl vl Re = = η υ η - wspł. lepkości (dynamiczny) V pędkość; ρ - gęstość υ - wspł. lepkości (kinematyczny) L chaakteystyczny ozmia ciała [ Pa s] m 2 s pzepływ laminany Re << 1 pzepływ tubulentny Re > Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 14
15 Pędkość ganiczna V g = 2F C ρ S C wspł. opou ρ - gęstość ośodka S - pole pzekoju V g = g ( m m ) k p 6πη g pędkość ganiczna kulki m Siła Stokes a Kulka o pomieniu pousza się w ośodku lepkim (mała liczba Reynoldsa) F o = 6πηV F w = m p g F g = m k g gdzie: m p - masa płynu wypatego pzez kulkę m k - masa kulki F o -Siła opou Równanie uchu kulki: k dv dt = m g m g 6πη V k p F w - Siła wypou F g - Siła gawitacji Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 15
16 Pzykład: Kostka o masie M = 100 g spoczywa na płaskiej poziomej powiezchni. Do kostki pzyłożono poziomą siłęf, któej watość z każdą sekundą ośnie liniowo o 2 N. Pzyjąć g = 10 m/s 2, współczynnik tacia statycznego µ s = 0,4 a współczynnik tacia kinematycznego µ K = 0,2. a) Naysuj wykesy: siły F i wypadkowej siły działającej na kostkę w funkcji czasu, z zaznaczeniem maksymalnej watości tacia statycznego oaz tacia kinetycznego. b) Oblicz czas, po jakim kostka uszy z miejsca. c) Napisać ównania pzyspieszenia i pędkości kostki w funkcji czasu wynikające z paw Newtona Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 16
17 Dynamika w układach nieinecjalnych ZASADY DYNAMIKI NEWTONA OBOWIĄZUJ ZUJĄ W UKŁADACH INERCJALNYCH!! Co można zobić aby móc m c stosować te zasady w układach nieinecjalnych? Siły y pozone, Siły y bezwładno adności F b ma = pzyspieszenie u układu II zasada dynamiki: F w = F z + F b = ma Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 17
18 Pzykład cięża pozony Winda usza w góę ze stałym pzyspieszeniem a. Jaki cięża wskaże waga spężynowa? F R F g = a u m a u F R waga wskazuje siłę F N F g ale F R = F N więc F N = F g + m a u F N Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 18
19 Dynamika w uchu po okęgu Roto Obsewato w układzie inecjalnym wskaże siły Siły zeczywiste: Obsewato w układzie nieinecjalnym Siła pozona: siła gawitacji siła eakcji na nacisk siła tacia siła odśodkowa bezwładności Dla obsewatoa w układzie inecjalnym siła eakcji na nacisk pełni olę siły dośodkowej Dla obsewatoa w układzie nieinecjalnym wszystkie siły: zeczywiste i siła odśodkowa (bezwładności) się ównoważą Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 19
20 Czy Ziemia jest układem inecjalnym? Rotacja Ziemi wokół własnej osi a Z m/s 2 Obieg wokół Słońca a O m/s 2 Obieg Słońca w Galaktyce a S m/s 2 Z czym poównać oszacowane watości pzyspieszeń? g = 9,81m/s 2 Wniosek? Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 20
21 Wahadło matematyczne Układ inecjalny Układ nieinecjalny F N F N F g = mg F g = mg F d F F = N + g czyli F d = F N - F g F b F =0 F F + F = 0 wyp N + g b mv 2 = F N mg 2 mv F N = + mg 2 czyli F N = F g + F b 2 mv F N = mg Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 21
22 Pzyspieszenie i siła Coiolisa Mówka na płycie gamofonowej Płyta obaca się ze stałą pędkością kątową ω. Mówka pousza się względem płyty uchem jednostajnym, posto- ω=const A V V S A V liniowym - wzdłuż pomienia, + V S1 z punktu A do punktu A w czasie t z pędkością V. Pędkość styczna V S ośnie waz z odległością od śodka płyty. W tym czasie płyta obaca się o kąt φ Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 22
23 Skoo Φ jest małe to V= V Φ czyli dv dt = V V t dφ dt Φ = V dla t 0 można zapisać: t czyli a 1 =V ω V V Φ V Pędkość V S zmienia się od: V S = ω do watości V S1 = ω ( + ) a więc V S = ω ( + ) - ω czyli V S = ω : t V otzymujemy S dv = ω dla t 0 S d = ω czyli a 2 =V ω t t dt dt a 1 i a 2 to watości wektoów o tym samym kieunku-wzastającego φ Całkowite pzyspieszenie a C = a 1 + a 2 =2V ω pzyspieszenie Coiolisa W układzie nieinecjalnym mówka jest w stanie ównowagi Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 23
24 Tacie działające na mówkę ma dwie składowe: adialną ównoważona pzez siłę odśodkową oaz styczną (zgodną z kieunkiem obotu płyty) ównoważoną pzez siłę działającą stycznie, pzeciwnie do kieunku obotu płyty siłę Coiolisa jest to SIŁA POZORNA działa w obacającym się układzie odniesienia! Ciało wyzucone w punkcie X, na półkuli północnej, pionowo w góę z pędkościąv, doznaje pzyspieszenia Coiolisa stycznego do ównoleżnika pzechodzącego pzez punkt X. Z kolei ciało pouszające się z pędkością styczną do ównoleżnika pzechodzącego pzez punkt Y doznaje pzyspieszenia Coiolisa skieowanego do śodka Ziemi. F = V C 2m ω X ω 2V ω Y ω ω 2V V V Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 24
25 Siła Coiolisa - wnioski Opisując uch w układzie inecjalnym: 2mV ω a i a = + + pzysp. w ukł. pzysp. w ukł. pzyspieszenie ω ω V ( pzyspieszenie inecjalnym obacającym się Coiolisa dośodkowe Pzykładowe zadania na siłę Coiolisa Dwaj myśliwi stzelali do szyszek. A stzelał do szyszki znajdującej się na zachód od niego, B do szyszki znajdującej się w kieunku południowym. Obydwaj spudłowali i tłumaczyli swoje niepowodzenia istnieniem siły Coiolisa. Któy z nich miał większe pawo tak się tłumaczyć? Jak jest wielkość odchylenia pocisku, jeżeli śednia pędkość v 0 = 300m/s, czas lotu t = 1s a szeokość geogaficzna ϕ= ODP.: x A 2,2 cm x B 1,7 cm ) Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 25
26 Podsumowanie Błędnym jest pzekonanie, że do podtzymania uchu potzebna jest siła (patz zasada bezwładności I zasada dynamiki Newtona) Pojęcia: uch i spoczynek mają sens jedynie względem konketnego układu odniesienia Zasady dynamiki obowiązują w układzie inecjalnym. W układach nieinecjalnych wpowadza się siły pozone, aby móc nadal stosować zasady dynamiki Ziemia może być taktowana jak układ inecjalny, lecz są zjawiska, któe mogą być wyjaśnione jedynie pzy uwzględnieniu sił pozonych: odśodkowej i Coiolisa Wydział Infomatyki, Elektoniki i Telekomunikacji - Teleinfomatyka 26
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
Bardziej szczegółowoFizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Bardziej szczegółowoSiły oporu prędkość graniczna w spadku swobodnym
FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Bardziej szczegółowoPęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu
Bardziej szczegółowoNierelatywistyczne równania ruchu = zasady dynamiki Newtona
DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje
Bardziej szczegółowoFizyka dla Informatyki Stosowanej
Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady
Bardziej szczegółowocz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
Bardziej szczegółowo1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Bardziej szczegółowoGRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Bardziej szczegółowoRuch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Bardziej szczegółowoPRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO
Pzedmiot: Fizyka PRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO Wykład 3 2015/2016, zima 1 Poglądy na mechanikę pzed Newtonem Aystoteles 384-322 p.n.e Aystoteles uważał, że każdy uch wynika albo
Bardziej szczegółowoZasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
Bardziej szczegółowoMechanika ruchu obrotowego
Mechanika uchu obotowego Fizyka I (Mechanika) Wykład VII: Ruch po okęgu Ruch w jednoodnym polu elektycznym i magnetycznym Pawa uchu w układzie obacajacym się Pojęcia podstawowe Układ współzędnych Służy
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Bardziej szczegółowoZastosowanie zasad dynamiki Newtona.
Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowoSiła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
Bardziej szczegółowoBRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 5 3.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 5 3.XI.016 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Układ inecjalny Zasada bezwładności Każde ciało twa w swy stanie
Bardziej szczegółowoXXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Bardziej szczegółowoIV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
Bardziej szczegółowoPrawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
Bardziej szczegółowoEnergia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Bardziej szczegółowo11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Bardziej szczegółowoPole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Bardziej szczegółowoLista zadań nr 1 - Wektory
Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)
Bardziej szczegółowoMechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne.
Więzy z tacie Mechanika oólna Wykład n Zjawisko tacia. awa tacia. awa tacia statyczneo Couloba i Moena Siła tacia jest zawsze pzeciwna do występująceo lub ewentualneo uchu. Wielkość siły tacia jest niezależna
Bardziej szczegółowoWykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoGrzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
Bardziej szczegółowoPRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Bardziej szczegółowo- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Bardziej szczegółowo20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Bardziej szczegółowoRuch jednostajny po okręgu
Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość
Bardziej szczegółowoWYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Bardziej szczegółowoZasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Bardziej szczegółowoLITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.
LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,
Bardziej szczegółowoPlan wykładu. Rodzaje pól
Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał
Bardziej szczegółowoSKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE
Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski
Bardziej szczegółowoJOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI 3 XII 2015 TORUŃ
O DOBRZE ZNANYCH ZASADACH DYNAMIKI NEWTONA JOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI DOBRZE ZNANE ZASADY DYNAMIKI NEWTONA I. Jeśli na ciało nie działajążadne
Bardziej szczegółowoFizyka 4. Janusz Andrzejewski
Fizyka 4 Ruch jednostajny po okręgu 2 Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej.
Bardziej szczegółowo8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Bardziej szczegółowoθ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z
IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Bardziej szczegółowoPędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 5: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,
Bardziej szczegółowoNa skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
Bardziej szczegółowoTeoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
Bardziej szczegółowocz.1 dr inż. Zbigniew Szklarski
ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay
Bardziej szczegółowoEnergia kinetyczna i praca. Energia potencjalna
Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson
Bardziej szczegółowoWPROWADZENIE. Czym jest fizyka?
WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych
Bardziej szczegółowoWykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
Bardziej szczegółowo23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
Bardziej szczegółowoWykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Bardziej szczegółowoSiły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
Bardziej szczegółowoOddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności
Bardziej szczegółowoFizyka 9. Janusz Andrzejewski
Fizyka 9 Janusz Andzejewski R K Księżyc kążący wokół iei (Rozważania Newtona) Pzyśpieszenie dośodkowe księżyca 4πRK ak = T Wstawiając dane dla obity księżyca: R K = 3.86 10 T = 7. 3dnia 5 k R 6300 = 386000
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.
ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,
Bardziej szczegółowoXI. RÓWNOWAGA I SPRĘŻYSTOŚĆ
XI. RÓWNOWAGA I SPRĘŻYSTOŚĆ 11.1. Równowaga Ciało sztywne pozostające w spoczynku jest w ównowadze statycznej. Jak wiemy, uch postępowy ciała opisuje duga zasada dynamiki Newtona, któą za pomocą pędu ciała
Bardziej szczegółowoPrawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
Bardziej szczegółowoZasady (Prawa) Dynamiki Newtona.
Wykład z fizyki Piot Posmykiewicz 22 W Y K Ł A D 3 Zasady (Pawa) Dynamiki Newtona. Mechanika klasyczna jest teoią zajmującą się uchem i bazującą na pojęciach siły i masy. Teoia ta opisuje zjawiska za pomocą
Bardziej szczegółowoGuma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
Bardziej szczegółowoι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Bardziej szczegółowoMagnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Bardziej szczegółowoStudia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
Bardziej szczegółowoGEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Bardziej szczegółowoZjawisko indukcji. Magnetyzm materii.
Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
Bardziej szczegółowoMoment pędu w geometrii Schwarzshilda
Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.
Bardziej szczegółowom q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Bardziej szczegółowoZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Bardziej szczegółowoRuch punktu materialnego
WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infomatyka Ruch punktu mateialnego Elżbieta Kawecka
Bardziej szczegółowoD Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:
D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki: od odkryć Galileusza i Newtona w dynamice rozpoczęła się nowoczesna fizyka jest stosunkowo łatwy na poziomie liceum zawiera
Bardziej szczegółowoPodstawy fizyki sezon 1 II. DYNAMIKA
Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka
Bardziej szczegółowoPodstawy fizyki sezon 1 II. DYNAMIKA
Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka
Bardziej szczegółowoTarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
Bardziej szczegółowoEnergia w geometrii Schwarzshilda
Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą
Bardziej szczegółowoZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
Bardziej szczegółowoWykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
Bardziej szczegółowoDYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Bardziej szczegółowo10. Ruch płaski ciała sztywnego
0. Ruch płaski ciała sztywnego. Pędkość w uchu płaskim Metody wyznaczania pędkości w uchu płaskim y x / chwiowy śodek pędkości. naitycznie Dane:, Szukane: s / /. Na podstawie położenia chwiowego śodka
Bardziej szczegółowoWstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.
Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem
Bardziej szczegółowo2.3. Pierwsza zasada dynamiki Newtona
Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować
Bardziej szczegółowoXXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
Bardziej szczegółowo