Operacje elementarne na macierzach. Rozwiązywanie układów równań metodą eliminacji Gaussa. Badanie rozwiązalności układów równań
|
|
- Laura Chmielewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 3 Opecje elemete mciezch Rozwiązywie ukłdów ówń metodą elimicji Guss Bdie ozwiązlości ukłdów ówń Wcmy tez do ukłdów ówń liiowych lgeiczych A53 (Defiicj) Ukłdem m ówń liiowych z iewidomymi zywmy ukłd ówń postci: ( m ) x x x x x x mx mx mx m gdzie dl i m j i x x x Rozwiąziem ukłdu ówń () zywmy kżdy ciąg ( x x x ) licz zeczywistych spełijących te ukłd Ukłd ówń któy ie m ozwiązń zywmy ukłdem spzeczym x def x Niech [ ] m A X B mx x m m m m Wtedy ukłd () moż zpisć w postci mciezowej: AX=B () tki ukłd zywmy ukłdem iejedoodym Ukłd AX=0 zywmy ukłdem jedoodym; jedym z ozwiązń ukłdu jedoodego jest mciez zeow 0 X [ 0] x 0 Mciez A zywmy mciezą główą ukłdu () mciez X mciezą (kolumą) iewidomych mciez B mciezą (kolumą) wyzów wolych A54 (Defiicj) Ukłdem Cme zywmy ukłd () w któym A jest mciezą ieosoliwą ( A [ ] ) x A+B55 (Twiedzeie) Ukłd Cme m dokłdie jedo ozwiązie X A B (3) ()
2 Dowód: ) m ozwiązie : AX A( A B) ( AA ) B IB B ; ) dokłdie jedo : możymy lewostoie () pzez mciez : A ( AX ) A B ( A A) X A B X A B A56 (Defiicj) Ukłdy ówń liiowych są ówowże jeżeli zioy ich ozwiązń są idetycze A+B57 (Fkt) Pode poiżej opecje wieszch mciezy ozszezoej def A B] m m m [ ukłdu () pzeksztłcją go ukłd ówowży: 57) zmi między soą wieszy ( ); 57) możeie wiesz pzez stłą óżą od ze ( c wi c 0); 573) dodwie do ustloego wiesz iego wiesz ( w i w k 574) skeśleie wiesz złożoego z smych ze ( w i ); w i w k 575) skeśleie jedego z wieszy ówych lu popocjolych ( 576) zmi miejscmi dwóch kolum pzy jedoczesej zmiie iewidomych ( k k ) j e A+B58 (Fkt metod elimicji Guss) Ukłd () ozwiązujemy stępująco: 58) udujemy mciez ozszezoą ukłdu: ); A w [ A B] ; m m m 58) mciezy ozszezoej dokoujemy ówowżych pzeksztłceń ukłdu spowdzjąc ją do postci: x x x x x [ A B] pzy czym ostti wiesz może ie pojwić się wcle lo wystąpi ze współczyikiem 0; wówczs ) jeżeli 0 to ukłd AX=B jest spzeczy; i ~ w k );
3 ) jeżeli ostti wiesz mciezy ie pojwi się i to ukłd AX=B jest ówowży ukłdowi Cme (ukłd ozczoy) i jego jedye ozwiązie m postć x x x c) jeżeli ostti wiesz mciezy ie pojwi się i to ukłd AX=B m ieskończeie wiele ozwiązń (ukłd ieozczoy) pzy czym spośód iewidomych ozczoych symolmi x x zleży [ A B] [ A B] od pozostłych iewidomych x x w stępujący sposó: x x x x (4) x x x x Niewidome są pmetmi i mogą pzyjmowć dowole wtości (jeżeli w (4) jest wyzczo jedozczie ( jest zędem mciezy A) x x 0 to wszystkie iewidome są pmetmi) Licz A+B59 (Wiosek) Metod elimicji Guss dl ukłdów Cme jest metodą pzeksztłci mciezy ozszezoej [ AB ] ukłdu do postci końcowej [ I X ] kozystjąc z opecji elemetych Ostti kolum jest wtedy ozwiąziem ukłdu A+B60 (Wiosek) Metod elimicji Guss dl zjdowi mciezy odwotej A I do A jest metodą polegjącą pzeksztłciu mciezy [ ] postci końcowej [ I X ] Wtedy X A B6 (Uwg) Pktyczą wesją metody elimicji Guss dl ukłdów () jest metod kolum jedostkowych któ poleg ówowżym pzeksztłciu mciezy ukłdu do możliwych jedostkowych kolum z jedykmi w óżych wieszch A+B+C6 (Uwg) W podoy sposó moż zdć ozwiązlość ukłdów () w któych mcieze A X oz B są zespoloe A+B+C63 (Ćwiczeie) Niech mcieze ABCX mją wymi Zpisć ukłd liiowy AX+XB=C w postci () dl 3 3 Wyzczik mciezy Wzoy Cme Kyteium odwclości mciezy Mciez odwot Wektoy i wtości włse A+B64 (Defiicj: wyzczik mciezy) Wyzczikiem mciezy kwdtowej zywmy fukcję któ kżdej mciezy zeczywistej (zespoloej) A pzypisuje liczę zeczywistą (zespoloą) det A = A X
4 Wyzczik mciezy A zdefiiujemy idukcyjie: 64 Jeżeli mciez A m stopień det A det 64 Jeżeli mciez A m stopień to det A det 643 Jeżeli mciez A m stopień 3 3 det A det Pzypuśćmy że zdefiiowliśmy już wyzczik mciezy o wymize ( ) ( ) Oliczjąc wyzczik mciezy A o wymize wykeślmy z mciezy A i-ty wiesz i j-ą kolumę otzymmy mciez wymiu ( ) ( ) Ozczmy pzez wyzczik (mio) otzymej mciezy i M to 3 to wpowdzmy ozczeie A ( ) i j M lgeiczym elemetu Liczę A zywmy dopełieiem mciezy A Zdefiiujmy wyzczik det A stopi pzez det A det A A A (jest to ozwiięcie Lplce wyzczik względem -ego wiesz) A+B65 (Włsości wyzczik) 65 Wyzczik zmiei zk jeżeli pzestwimy miedzy soą dw (dwie) sąsiedie wiesze (kolumy) 65 Jeżeli pomożymy wszystkie elemety pewego wiesz (pewej kolumy) pzez wspóly czyik to wyzczik zostie też pomożoy pzez te czyik 653 Wyzczik ie zmiei się jeżeli do elemetów dowolego wiesz (kolumy) dodmy odpowidjące im elemety iego wiesz (kolumy) pomożoe pzez dowolą liczę (opecje zywmy opecjmi elemetymi) 654 Wyzczik mjący wiesz (kolumę) złożoą z smych ze jest ówy Wyzczik mjący dw (dwie) jedkowe lu popocjole wiesze (kolumy) jest ówy Wyzczik któego elemety pewego wiesz (pewej kolumy) są summi dwóch skłdików jest ówy sumie wyzczików w któych elemety tego wiesz (tej kolumy) są zstąpioe tymi skłdikmi
5 657 Wyzcziki mciezy i jej tspozycji są ówe:det A det A 658 Niech A B wtedy det( AB) det A det B 659 det A det A 650 Niech A A A kk ędą mciezmi kwdtowymi Wtedy A A A k 0 A A k det det A det A det Akk 0 0 Akk 65 det I 65 Rozwiięcie Lplce wyzczik (względem i-ego wiesz lu j-ej kolumy): det A det iai i Ai i Ai j A j j A j ; gdzie jest dopełieiem lgeiczym elemetu A Ćwiczeie Spwdzić włsości dl dowolego (poziom C) 3 (poziom A) i dl A+B66 (Wiosek) Dl ustloych licz tulych oz s gdzie s pwdziwe są wzoy: det[ ] s sa sa s A 0 s det[ ] s s A s A s A 0 s A+B67 (Wiosek: kyteium odwclości mciezy) Mciez odwcl (istieje A jest ieosoliw) wtedy i A to jest mciez tylko wtedy gdy det A 0 Wtedy A T A jest oliczmy ze wzou Aji gdzie A ji jest dopełieiem lgeiczym elemetu ji det A Dowód: ) tylko wtedy : I A A det I det A det A det A 0; ) wtedy wyik (poziom B) odz z A+B66 A68 (Uwg) Wzó mciez odwotą zwty w A+B66 defiiuje stępującą poceduę odwci mciezy:
6 68) olicz i mciez dopełień lgeiczych dl mciezy A wstwijąc w miejscu () liczę ; det A 0 68) dokoj tspozycji powstłej mciezy; 683) podziel kżdy elemet otzymej mciezy pzez det A; 684) otzym mciez ędzie ów A A A+C69 (Fkt itepetcj geometycz wyzczików -go i 3-go stopi) 69 Niech D ozcz ówoległook ozpięty wektoch ( x y ) ( x y ) Wtedy pole D tego ówoległooku wyż się wzoem: x y D mesd det x y 69 Niech V ozcz ówoległości ozpięty wektoch ( x y z) ( x y z) c ( xc yc zc) Wtedy ojętość V ówoległościu wyż się wzoem: x y z V mesv det x y z x c yc zc tego A+B70 (Odwcie mciezy i wzoy Cme) Niech Ax () (gdzie A jest mciezą jest kolumą wyzów x wolych i x jest kolumą iewidomych) jest ukłdem ówń x liiowych Wtedy ukłd () m jedo ozwiązie wtedy i tylko wtedy gdy det A 0 Rozwiązie wyż się wzoem: det Bi xi dl i= () det A gdzie mciez B i powstje z mciezy A pzez zstąpieie i-ej kolumy wektoem kolumowym (metod Cme) Dowód Z metody elimicji Guss A+B58 wyik że ukłd () m jedo ozwiązie wtedy i tylko wtedy gdy jest o ukłdem Cme Wtedy
7 A A A A x A det A det A A A A A A i A i Ai det Bi xi dl i= det A det A Uwg Wzoy () z A+B70 oszą zwę wzoów Cme Wżą olę w lgeze mciezy odgyw A7 (Defiicj: wielomi chkteystyczy) Niech A ędzie mciezą kwdtową Wtedy jej wielomi chkteystyczy zdefiiowy jest stępująco A( ) det( I A) Z defiicji wyzczik wyik że fukcj zeczywiście jest wielomiem zmieej to jest ( ) det( I A) jeżeli A A A A+C7 (Twiedzeie Cyley -Hmilto) Dl dowolej mciezy A kwdtowej mmy: A A A A A I ( ) 0 gdzie 0 ozcz mciez zeową o tych smych wymich co A i 0 def A I I Uwg Twiedzeie A+C7 możemy użyć do oliczei -tej potęgi mciezy A w zleżości od iższych potęg: A A I A73 (Defiicj) Niech A ędzie mciezą Wekto (kolum) V zywmy wektoem włsym mciezy A jeśli istieje licz (zespolo w ogólym pzypdku) tk że AV V i wekto V jest óży od ze Liczę zywmy wtością włsą mciezy A A74 (Uwg) Jeżeli wekto V jest ozwiąziem ówi AV = V to wekto pomożoy pzez dowolą liczę też jest ozwiąziem tego ówi Stąd wyik że ukłd liiowy jedoody ( I A) V 0 (3) m ieskończeie wiele ozwiązń Wtedy det( I A) 0 A75 (Twiedzeie) Licz jest wtością włs mciezy A wtedy i tylko wtedy gdy jest piewistkiem jej wielomiu chkteystyczego tz gdy
8 det( I A) 0 (4) A+B76 (Uwg) Wielomi chkteystyczy może ie mieć piewistków zeczywistych Ay w pełi wykozystć podą tu teoię leży ozptywć ówież piewistki ędące liczmi zespoloymi A+B+C77 (Pzykłdy i ćwiczei) 77 Reguł Sus oliczi wyzczików stopi 3: 3 def det ( ) ( ) Oliczyć wyzczik 0 0 j z pomocą ) eguły tójkąt 3j 4j j ) eguły Sus 3) ozwiięci Lplce względem -ego wiesz 4) ozwiięci Lplce względem -ej kolumy 5) opecji elemetych 773 Algoytm Guss oliczi wyzczików: 0 det A Oliczyć w te sposó = 3 ( ) 3 ( ( ))( )( ) = Wyzczik Wdemode : V( ) = k l ( ) l k
9 775 Zleźć wektoy włse V V V3 V 4 i wtości włse mciezy A Niech ztem T= [ V V V 3 V 4 ] Oliczyć Spwdzić że mciezą digolą Czy te fkt jest ogóly? T AT T AT jest
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
MACIERZE I WYZNACZNIKI
MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)
[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ
I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.
AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer.
ETODY NUERYCZNE Wykłd 6. Rozwiązywie ukłdów rówń liiowych dr hb. iż. Ktrzy Zkrzewsk, prof. AGH et.numer. wykłd 6 Pl etody dokłde etod elimicji Guss etod Guss-Seidl Rozkłd LU et.numer. wykłd 6 Ukłd rówń
MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory
MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Symbol Newtona liczba wyborów zbioru k-elementowego ze zbioru n elementów. Symbol Newtona
B Głut Symol Newto Symol Newto licz wyoów ziou -elemetowego ze ziou elemetów ) ( A B B B t t żd dog: odciów do góy Ile ozwiązń m ówie: 4 6 gdzie i są ieujemymi liczmi cłowitymi? 9 84 4 4 5 Licz ozwiązń
Zasada indukcji matematycznej. Dowody indukcyjne.
Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
Rachunek wektorowo-macierzowy w programie SciLab
Rchuek wektorowo-mcierzowy w progrmie Scib Rchuek wektorowo-mcierzowy w progrmie Scib Dziłi liczbch Dodwie i odejmowie + b 3 + = 5 b = + (-b) 3 = 3 + (-) = + 0 = + (-) = 0 Rchuek wektorowo-mcierzowy w
Układy równań liniowych Macierze rzadkie
5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -
Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej
Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci
EGZAMIN MATURALNY Z MATEMATYKI
EGZMIN MTURLNY Z MTEMTYKI WZRY SPIS TREŚI. Wtość ezwzględ liczy.... Potęgi i piewistki.... Logytmy... 4. Sili. Współczyik dwumiowy... 5. Wzó dwumiowy Newto... 6. Wzoy skócoego możei... 7. iągi... 8. Fukcj
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.
Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.
Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
PODSTAWY ALGEBRY LINIOWEJ ALGEBRA MACIERZY
PODSTWY LGEBRY LINIOWEJ LGEBR MCIERZY Mcierzą prostokątą o m ierszch i kolumch zymy tblicę m liczb rzeczyistych ij (i,,...,m; j,,...,) zpisą postci ujętego isy kdrtoe prostokąt liczb M m M m Liczby rzeczyiste
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.
Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH
pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.
Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce
Spis treści. Publikacja współinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana bezpłatnie.
Spis teści. Wtość ezwzględ liczy.... Potęgi i piewistki.... Logytmy... 4. Sili. Współczyik dwumiowy... 5. Wzó dwumiowy Newto... 6. Wzoy skócoego możei... 7. iągi... 8. Fukcj kwdtow...4 9. Geometi litycz...4
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
6. Układy równań liniowych
6. Ukłdy rówń liiowych 6. Podstwowe określei Defiicj 6.. (ukłd rówń liiowych rozwiązie ukłdu rówń) Ukłde rówń liiowych z iewidoyi gdzie N zywy ukłd rówń postci:...... (6..) O... gdzie ij R to tzw. współczyiki
Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE
Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem
Szeregi o wyrazach dowolnych znaków, dwumian Newtona
Poprwi lem 9 czerwc 206 r, godz 20:0 Twierdzeie 5 kryterium Abel Dirichlet Niech be dzie ieros cym ci giem liczb dodtich D Jeśli 0 i ci g sum cze ściowych szeregu b jest ogriczoy, to szereg b jest zbieży
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
Działania wewnętrzne i zewnętrzne
Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel miel@gedupl Dziłi wewętrze i zewętrze Nie X ędzie ustlym iepustym zirem Def Dwurgumetwym dziłiem wewętrzym w zirze X zywmy fukję Jeśli X i y X t y X zywmy wyikiem
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia
Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1
Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych
Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2).
ZADANIA NA POCZA TEK Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 4 3 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
Liczby zespolone i wielomiany
/5 Liczby zespoloe i wielomiy Rówie x ie m rozwiązi w zbiorze liczb rzeczywistych. Tk więc ie kżdy wielomi o współczyikch leżących do posid miejsce zerowe (zwe iczej pierwistkiem) w tym zbiorze. Okzuje
Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego.
Wybre zgdiei bdń opercyjych Wykłd Metod simpleks rozwiązywi zdń progrmowi liiowego Prowdzący: dr iiż.. Zbiigiiew TARAPATA De kotktowe: e-mil: WWW: Zbigiew.Trpt@wt.edu.pl http://trpt.stref.pl tel. : 83-94-3,
CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.
CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać
met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania
Kryterium stbilości Stbilość liiowych ukłdów sterowi Ukłd zmkięty liiowy i stcjory opisy rówiem () jest stbily, jeŝeli dl skończoej wrtości zkłócei przy dowolych wrtościch początkowych jego odpowiedź ustlo
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdei Morsk w Gdyi Ktedr utotyki Okrętowej Teori sterowi lgebr cierzow Mirosłw Toer. ELEMENTRN TEORI MCIERZOW W owoczesej teorii sterowi brdzo często istieje potrzeb zstosowi otcji cierzowej uprszczjącej
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań
MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (
(0) Rachunek zaburzeń
Wyłd XII Rch zbzń Mchi wtow Rch zbzń st podstwową mtodą zdowi pzybliżoych ozwiązń óżgo odz ówń występących w fizyc Tt zsti pzdstwioy ch zbzń w zstosowi do ówi Schödig bz czs Ogiczymy się pzy tym do tzw
Katedra Fizyki SGGW 158. Ćwiczenie 158. Rząd maksimum, n = 1 Rząd maksimum, n = 2
Kted Fizyki SGGW Nzwisko... Dt... N liście... Imię... Wydził... Dzień tyg.... Godzi... Ćwiczeie die zjwisk dyfkcji pojedyczej i podwójej szczeliie Długość fli świtł lse, [m] Odległość szczeli od eku, l
Ciągi liczbowe podstawowe definicje i własności
Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom
CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
Ciągi i szeregi - Lucj owlski CIĄGI LICZBOWE N,,,... zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej). Nieskończoy ciąg liczbowy to przyporządkowie liczbom
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0
CAŁKA KRZYWOLINIOWA NIESKIEROWANA
Auomy i Rooy Aliz Wyłd 4 d Adm Ćmiel cmiel@gh.edu.pl AŁA RZYWOLINIOWA NIESIEROWANA Niech ędzie płsim lu pzeszeym łuiem głdim o pmeyzcji: x : y weoowo ; ) z z [ ] Uwg: Złożeie głdości x,, z, ) gwuje posowlość
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Sieć odwrotna. Fale i funkcje okresowe
Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod
3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...
RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz
Rchuek prwdopodobieństw MA5 Wydził Elektroiki, rok kd. 20/2, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 7: Zmiee losowe dwuwymirowe. Rozkłdy łącze, brzegowe. Niezleżość zmieych losowych. Momety. Współczyik
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.
16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)
Ciągi i szeregi liczbowe
Ciągi i szeregi liczbowe Defiicj. Jeżeli kżdej liczbie turlej przyporządkow zostł jkś liczb rzeczywist, to mówimy, że zostł określoy ciąg liczbowy (ieskończoy). Formlie ozcz to, że ciąg liczbowy jest fukcją
9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu
9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Rozwiązywanie układów równań liniowych (1)
etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych etody dokłde pozwlą uzyskie rozwiązi w skończoe liczbie kroków obliczeiowych.
A A A A11 A12 A1. m m mn
DODTEK NR. GEBR MCIERZY W dodatku tym podamy ajważiejsze defiicje rachuku macierzowego i omówimy iektóre fukcje i trasformacje macierzy ajbardziej przydate w zastosowaiach umeryczych a w szczególości w
ELEMENTÓW PRĘTOWYCH. Rys.D3.1
DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
1.5. Iloczyn wektorowy. Definicja oraz k. Niech i
.. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKI
MATERIAŁY POMOCNICZE DO MATURY Z MATEMATYKI . Ziory. Dziłi ziorch. Ziór, elemet zioru pojęci pierwote. Jeśli x leży do ( jest elemetem ) zioru A, to piszemy x A, jeśli y ie leży do zioru A, piszemy y A.
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4