PODSTAWY ALGEBRY LINIOWEJ ALGEBRA MACIERZY
|
|
- Bronisława Stefańska
- 7 lat temu
- Przeglądów:
Transkrypt
1 PODSTWY LGEBRY LINIOWEJ LGEBR MCIERZY Mcierzą prostokątą o m ierszch i kolumch zymy tblicę m liczb rzeczyistych ij (i,,...,m; j,,...,) zpisą postci ujętego isy kdrtoe prostokąt liczb M m M m Liczby rzeczyiste ij zymy elemetmi mcierzy. KŜdy elemet mcierzy jest ozczy dom skźikmi: pierszy ozcz umer iersz drugi umer kolumy Iloczy m zymy ymirmi mcierzy. Mcierz będziemy zpisyć często krótszej postci: m ij ij m ij m m Njczęściej mcierze ozczmy duŝymi pogrubioymi litermi, C, X, W, B,... PRZYKŁD. Normy zuŝyci środkó produkcji jedostkę yrobó LF i BET ujęte tbeli moŝ zpisć jko mcierz N. Normy zuŝyci jedostkę yrobu yroby stl dreo frb prc eergi [szt] [kg/szt] [m /szt] [litr/szt] [rg] [kwh/szt] LF BET K K O K m M N ij
2 W zbiorze mcierzy{ } m yróŝi się pee typy mcierzy, bądź ze zględu ich ymiry, bądź rtości elemetó ij mcierzy. Wymiry mcierzy są podstą do yróŝiei mcierzy prostokątych, mcierzy kdrtoych i ektoró. Def. Mcierz ij prostokątą, gdy m m zy się mcierzą Def. Mcierz ij m dl m zy się mcierzą kdrtoą. Mcierz kdrtoą ozcz się symbolem ij stopiem mcierzy kdrtoej.. Liczbę zy się
3 Def. Elemety:,,..., mcierzy kdrtoej głóą mcierzy. ij zy się przekątą ij Def. Mcierz prostokątą m () zy się ektorem kolumoym (lub krótko ektorem) i zpisuje postci: M m Def. Mcierz prostokątą ij (m) zy się ektorem ierszoym i zpisuje [ ] postci L
4 Wektory ierszoe i kolumoe ozcz się tym skrypcie jczęściej młymi, pogrubioymi litermi, b,..., x, y itp. Ze zględu rtości liczboe elemetó ij mcierzy zbiorze mcierzy yróŝi się mcierze zeroe i mcierze jedykoe. Def. Mcierz ij m, której szystkie elemety ij zy się mcierzą zeroą i ozcz symbolem mx. Def. Mcierz ij m, której szystkie elemety ij zy się mcierzą jedykoą i ozcz symbolem J mx.
5 W zbiorze mcierzy kdrtoych, stopi, yróŝi się mcierze: jedostkoe, digole, trójkąte, symetrycze i skośosymetrycze. Def. Mcierz kdrtoą (stopi ) ij ruek: ij, której elemety spełiją dl dl zy się mcierzą jedostkoą i ozcz symbolem I Wszystkie elemety głóej przekątej mcierzy I są ięc jedykmi, tomist pozostłe elemety zermi. Przykłd: Mcierzmi jedostkoymi są m.i. mcierze: [] i i j, j
6 6 Def. Mcierz kdrtoą (stopi ) ij, której ij, dl kŝdego i j zy się mcierzą digolą. Przykłd: Mcierzmi digolymi są m. i. mcierze: Def. Mcierz kdrtoą (stopi ) ij, której dl kŝdej pry (i,j): ij ji zy się mcierzą symetryczą. Przykłd: Mcierze: są mcierzmi symetryczymi.
7 Def. Mcierz kdrtoą (stopi ) ij, której dl kŝdej pry (i, j): ij - ji zy się mcierzą skośosymetryczą. Przykłdmi mcierzy skośosymetryczych są stępujące mcierze: - -
8 8 DZIŁNI N MCIERZCH Niech będą de mcierze ij, ij b B, ij c C. Def. Mcierze: mx i B mx są sobie róe (B), jeśli ij b ij, dl kŝdej pry (i,j) Def. Sumą mcierzy mx i B mx zy się tką mcierz C mx (CB), Ŝe dl kŝdej pry skźikó (i,j) zchodzi róość: c ij ij b ij. Przykłd: Obliczyć sumę B dl, B, 6 6 ) ( B
9 t. Dodie mcierzy jest przemiee, czyli BB 9 t. Dodie mcierzy jest łącze, czyli (B)C)(BC) t. JeŜeli B, to B def. Mcierz B zy się mcierzą przecią do mcierzy, co zpisuje się : B -, jeśli B def. Mcierz B xm zy się trspozycją mcierzy mx (lub mcierzą trspooą do mcierzy mx ), jeśli dl kŝdej pry (i,j) zchodzi róość: b ij ji Mcierz trspooą B ozcz się symbolem T (lub ) B Przykłd: Mcierz jest mcierzą trspooą do mcierzy NleŜy zuŝyć, Ŝe koleje kolumy (iersze) mcierzy B odpoidją kolejym ierszom(kolumom) mcierzy.
10 T. Trspooie mcierzy posid stępujące łsości: ( T ) T (B) T T B T ( B) T B T T t. JeŜeli mcierz [ ij ] x spełi ruek T, to jest mcierzą symetryczą. Def. Iloczyem liczby α i mcierzy mx, zy się tką mcierz B mx, co zpisuje się: Bα), której b ij α ij dl kŝdej pry (i,j) Przykłd. Obliczyć (-)B, jeśli B 9 )B (
11 def. Iloczyem mcierzy mxk przez mcierz B kx zy się tką mcierz C mx (co zpisuje się C B), której elemety spełiją ruek: kj ik j i j i ij j i b b b c... ), ( B ( ) ( ) 9 B t. Dl doolej mcierzy mx zchodzą róości: I m I t. Zchodzą stępujące róości α(b)ααb α(b) (αb) t. MoŜeie mcierzy przez mcierz jest łącze, czyli ( B) C (B C) t. MoŜeie mcierzy przez mcierz jest rozdziele zględem dodi mcierzy, czyli (BC) B C
12 Def. Mcierz kdrto B[b ij ] x zymy mcierzą odrotą do mcierzy kdrtoej [ ij ] x, jeśli spełioy jest ruek: BB I Mcierz odrotą, jeśli istieje, ozcz się symbolem -, proces yzczi(poszukii jej elemetó zy się odrciem mcierzy. Przykłd: Mcierz B jest mcierzą odrotą do mcierzy, gdzie: i B, poieŝ - - B orz
13 B MoŜ ztem pisć: def. Mcierzą kdrtoą, któr ie posid mcierzy odrotej zy się mcierzą osoblią. Przykłd: Pokzć moŝ, Ŝe p. mcierz jest mcierzą osoblią t. JeŜeli jest mcierzą ieosoblią, to ( - ) T ( T ) - orz ( - ) -
14 t. JeŜeli i B są ieosobliymi mcierzmi tego smego stopi, to (B) - B - - t. JeŜeli jest mcierzą ieosoblią i α R\{}, to ( ) ( ) α α def. Mcierz kdrtoą spełijącą ruek T T I Nzy się mcierzą ortogolą
15 PRZEKSZTŁCENI ELEMENTRNE MCIERZY def. Przeksztłceimi elemetrymi mcierzy [ ij ] m zy się stępujące dziłi ykoye ierszch (lub kolumch) mcierzy: T: PomoŜeie szystkich elemetó ybrego iersz (kolumy) przez liczbę α. T: Zmi miejscmi (przestieie) dóch doolie ybrych ierszy (lub kolum) mcierzy; T: Dodie do szystkich elemetó ybrego iersz (kolumy) odpoidjących im (ystępujących tej smej kolumie (ierszu)) elemetó iego iersz (kolumy) pomoŝoych przez liczbę α
16 6 Przykłd: /(-) 6 k kk*(-) 6, 6 k k, k k
17 ODWRCNIE MCIERZY Jedą z metod odrci mcierzy jest metod ykorzystując opercje elemetre. Ide poleg róoległym przeksztłciu elemetrym ierszy mcierzy dej orz mcierzy jedostkoej I. Schemt postępoi moŝ ująć krótko I : : ciąg opercji elemetrych : : I B - JeŜeli ie moŝ odrócić mcierzy pody sposób, to ozcz, Ŝe ie istieje mcierz odrot do mcierzy.
18 8 PRZYKŁD. D jest mcierz ( ) ( ) / / / / / / oy oy oy ( ) / / / / oy oy oy ( ) / / / / / / oy oy oy Ztem mcierz odrot do mcierzy m postć / / / /
2. Macierze. Niech. m, n N. Zbiór zawierający m n liczb a ij n, zapisanych w postaci tablicy prostokątnej
Macierze Niech m, N Zbiór zaierający m liczb a R, gdzie i,, m, j,,, zapisaych postaci tablicy prostokątej a a K a a a K a K K K K am am K am azyamy macierzą o ymiarach m (macierzą o m ierszach i kolumach
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
Pojęcia Działania na macierzach Wyznacznik macierzy
Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to
- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
MACIERZE I WYZNACZNIKI
MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Rachunek wektorowo-macierzowy w programie SciLab
Rchuek wektorowo-mcierzowy w progrmie Scib Rchuek wektorowo-mcierzowy w progrmie Scib Dziłi liczbch Dodwie i odejmowie + b 3 + = 5 b = + (-b) 3 = 3 + (-) = + 0 = + (-) = 0 Rchuek wektorowo-mcierzowy w
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory
MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.
AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy
PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach
PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdei Morsk w Gdyi Ktedr utotyki Okrętowej Teori sterowi lgebr cierzow Mirosłw Toer. ELEMENTRN TEORI MCIERZOW W owoczesej teorii sterowi brdzo często istieje potrzeb zstosowi otcji cierzowej uprszczjącej
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
1.5. Iloczyn wektorowy. Definicja oraz k. Niech i
.. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia
Wykªd 1 Mcierze i wyznczniki 11 Mcierze podstwowe okre±leni Denicj 1 Mcierz (rzeczywist ) wymiru m n, gdzie m, n N, nzywmy prostok tn tblic zªo»on z m n liczb rzeczywistych ustwionych w m wierszch i n
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer.
ETODY NUERYCZNE Wykłd 6. Rozwiązywie ukłdów rówń liiowych dr hb. iż. Ktrzy Zkrzewsk, prof. AGH et.numer. wykłd 6 Pl etody dokłde etod elimicji Guss etod Guss-Seidl Rozkłd LU et.numer. wykłd 6 Ukłd rówń
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
Układy równań liniowych Macierze rzadkie
5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe
lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego.
Wybre zgdiei bdń opercyjych Wykłd Metod simpleks rozwiązywi zdń progrmowi liiowego Prowdzący: dr iiż.. Zbiigiiew TARAPATA De kotktowe: e-mil: WWW: Zbigiew.Trpt@wt.edu.pl http://trpt.stref.pl tel. : 83-94-3,
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej
Pochodne i całki, macierze i wyznaczniki
Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
n 3 dla n = 1,2,3,... Podać oszacowania
Zestw r : Ciągi liczbowe włsości i gric.. Niech dl =.... Sprwdzić cz jest ciągiem mootoiczm rtmetczm... Sprwdzić cz stępując ciąg jest ciągiem geometrczm. Wpisć pierwszch pięć wrzów ciągu stępie dl ciągu
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych
Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(
Wartości i wektory własne
Michł Pzdoski Istytut echologii Iformcyych Iżyierii Lądoe ydził Iżyierii Lądoe Politechik Krkosk rtości i ektory łse ektorem łsym mcierzy A [ ] zymy kżdy iezeroy ektor V, który zchoue kieruek po ykoiu
Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy
Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne
3, leŝącym poniŝej punktu P. Wartości funkcji f są
Odpowiedzi i schemty oceii Arkusz Zdi zmkięte Numer zdi Poprw odpowiedź Wskzówki do rozwiązi D ( 0 x )( x + b) x 0 + b 0 x xb x + ( 0 b) x + b 0 x + ( 0 b) x + b 0 0x + 0 0 WyrŜei po obu stroch rówości
Wprowadzenie: Do czego służą wektory?
Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
a a a b M. Przybycień Matematyczne Metody Fizyki I
Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Zasada indukcji matematycznej. Dowody indukcyjne.
Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń
Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).
Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ
I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów
Ciągi liczbowe podstawowe definicje i własności
Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym
Układy równań liniowych Macierze rzadkie
wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Zbiory wyznaczone przez funkcje zdaniowe
pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnik Gdńsk Wydził Elektrotechniki i Automtyki Ktedr Inżynierii Systemów Sterowni Teori sterowni Sterowlność i obserwowlność liniowych ukłdów sterowni Zdni do ćwiczeń lbortoryjnych termin T Oprcownie:
O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI
ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y
Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =
A A A A11 A12 A1. m m mn
DODTEK NR. GEBR MCIERZY W dodatku tym podamy ajważiejsze defiicje rachuku macierzowego i omówimy iektóre fukcje i trasformacje macierzy ajbardziej przydate w zastosowaiach umeryczych a w szczególości w
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
6. Układy równań liniowych
6. Ukłdy rówń liiowych 6. Podstwowe określei Defiicj 6.. (ukłd rówń liiowych rozwiązie ukłdu rówń) Ukłde rówń liiowych z iewidoyi gdzie N zywy ukłd rówń postci:...... (6..) O... gdzie ij R to tzw. współczyiki
Jacek Gruszka Lech Kaczmarek. Elementy matematyki wyższej
elemetidd 9--8 ::9 Jcek Gruszk Lech Kczmrek Elemet mtemtki ższej Wdicto Wższej Szkoł Komuikcji i Zrządzi Pozń Autorz: dr Jcek Gruszk dr Lech Kczmrek Recezet: prof dr hb Rszrd Płucieik Korekt: Aleksdr Spriger
ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1
ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie
Liczby zespolone i wielomiany
/5 Liczby zespoloe i wielomiy Rówie x ie m rozwiązi w zbiorze liczb rzeczywistych. Tk więc ie kżdy wielomi o współczyikch leżących do posid miejsce zerowe (zwe iczej pierwistkiem) w tym zbiorze. Okzuje
Operacje elementarne na macierzach. Rozwiązywanie układów równań metodą eliminacji Gaussa. Badanie rozwiązalności układów równań
WYKŁAD 3 Opecje elemete mciezch Rozwiązywie ukłdów ówń metodą elimicji Guss Bdie ozwiązlości ukłdów ówń Wcmy tez do ukłdów ówń liiowych lgeiczych A53 (Defiicj) Ukłdem m ówń liiowych z iewidomymi zywmy
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Pierwiastek z liczby zespolonej
Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Scenariusz lekcji matematyki w klasie II LO
Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi
SYNTEZA STRUKTURALNA PŁASKICH MANIPULATORÓW
SYTEZ STRKTRL PŁSKCH MPLTORÓW Etp sytezy strukturlej jest jedym z pierwszych rdzo istotych etpów w procesie projektowi. Po sformułowiu jwżiejszych złożeń i wymgń dotyczących projektowego ukłdu (złożei
Ciąg arytmetyczny i geometryczny
Ciąg rytmetyczy i geometryczy Zd. : Ciąg ( ) jest opisy wzorem = 5 + ( )(k k ), gdzie k jest prmetrem. ) WykŜ, Ŝe ( ) jest ciągiem rytmetyczym. Dl jkich wrtości prmetru k ciąg te jest mlejący? b) Dl k
Wszystkim życzę Wesołych Świąt :-)
Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej
Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci
Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.
Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.
Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:
Badanie regularności w słowach
Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)
List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f
Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE
Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Ciągi i szeregi liczbowe
Ciągi i szeregi liczbowe Defiicj. Jeżeli kżdej liczbie turlej przyporządkow zostł jkś liczb rzeczywist, to mówimy, że zostł określoy ciąg liczbowy (ieskończoy). Formlie ozcz to, że ciąg liczbowy jest fukcją
GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana
GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,