Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne"

Transkrypt

1 r: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe wyłd r różczowe przylżoe cłowe umerycze

2 r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc Perwsz pocod uc dec: ' lm Ozcze: - uc oreślo stce putów {,..., } = odległość medzy oleym putm węzłowym węzły rówoodległe

3 r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc prostsze przylże wzory dwuputowe wzór dwuputowy w przód ' wzór dwuputowy w tył, ', źródł edołdośc: łędy ocęc zmesząc moż zwęszyć dołdość, łędy zorągle wol zeżość, oszt olczeń zcząco wzrst przy mleącym

4 r: Perwsz pocod uc wzory weloputowe Metody olczeowe - Budowctwo semestr - wyłd r wzór tróputowy ', przylżee est dore eśl zme sę wolo odcu o długośc

5 r: 5 Pocode uc wzory weloputowe Metody olczeowe - Budowctwo semestr - wyłd r wzór pęcoputowy 8 8, ' m węce putów tym trude wyzczyć pocode w putc rzegowyc, wzór tróputowy dl druge pocode '', wzór de dore przylżee dl uc wolozmee Zde: zpsz ucę Scl olczącą przylżoe wrtośc perwsze druge pocode de uc w oreśloym puce przy użycu wzorów podyc powyże; WE:,,

6 r: 6 Metody olczeowe - Budowctwo semestr - wyłd r Zde cłow umeryczego Prolem, rńce przedzłu cłow: d? Możlwe rozwąze: przylżee uc podcłowe przez ucę terpoluącą g przylżmy wówczs: d g d dostemy oszcowe cłę możemy olczyć z dowolą dołdoścą, eżel tylo de sę przylżyć dowole dołde: g, [, ] [ g ] d

7 Metody olczeowe - Budowctwo semestr - wyłd r r: 7 Zde cłow umeryczego przylżee uc podcłowe welomem Lgrge o węzłc rówoodległyc L d I dt t A A I gdze dt t dt t I dt d t t d d L L I I ; ;,, ;

8 r: 8 Metody olczeowe - Budowctwo semestr - wyłd r Zde cłow umeryczego poęce wdrtury Wzory postc d A przylżące wrtość cł zywć ędzemy wdrturm współczy A zywć ędzemy współczym wdrtury, puty zywć ędzemy węzłm wdrtury, Jeśl I d, Q A to wyrżee R I Q zywć ędzemy resztą wdrtury

9 r: 9 Kwdrtur oł Prolemy strożyte Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtur oł sostruowu przy użycu cyrl l ez podzł, wdrtu, tórego pole rówe est polu dego oł de gury geometrycze rysec ąt podzle ąt trzy rówe częśc edye przy użycu cyrl l Podwoee sześcu - prolemem dels zudowe sześcu o oętośc dw rzy węsze ż dy

10 Metody olczeowe - Budowctwo semestr - wyłd r r: Kwdrtury ewto-cotes Kwdrtur powstł poprzez przylżee uc podcłowe welomem Lgrge o węzłc rówoodległyc os zwę wdrtury ewto-cotes dt t A A I gdze L

11 Metody olczeowe - Budowctwo semestr - wyłd r r: Kwdrtury ewto-cotes = wzór trpezów ] [ ] [, t tdt A t t dt t A A A Q dt t A A I gdze Q ogóly wzór wdrtury

12 Metody olczeowe - Budowctwo semestr - wyłd r r: Kwdrtury ewto-cotes = wzór prol ] [ ] [ ] [ t t dt t t A t t dt t t A t t t dt t t A 6 Q ogóly wzór wdrtury dt t A A I gdze

13 r: Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury złożoe ewto-cotes Błąd wdrtur ewto-cotes est proporcoly do pewe potęg długośc przedzłu cłow eżel przedzł cłow est duży, wdrtur wet sego stop może e zpewć żde dołdośc Wyśce: podzel przedzł cłow [,] pewą lczę podprzedzłów [ -, ] =,...,; = < <...< - < = w żdym podprzedzle [ -, ] zstosu wdrturę sego stop zsumu wy. Kwdrturę ędącą sumą wdrtur prostyc zywmy wdrturą złożoą. łąd wdrtury złożoe est dużo meszy ż odpowede wdrtury proste zwęsząc lczę podzłów możemy dowole zmeszć łąd

14 Metody olczeowe - Budowctwo semestr - wyłd r r: Kwdrtury złożoe ewto-cotes = złożoy wzór trpezów stosuąc wzór trpezów dl żdego z przedzłów [ -, ] =,..., otrzymuemy po zsumowu, Q 6, Q Q = złożoy wzór prol - Smpso przymuąc przyste, stosuąc wzór prol dl żdego z przedzłów [, + ] =,...,- dostemy:

15 r: 5 Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury ewto-cotes = wzór trzec ósmyc wdrtur prost Q * * 8 Zde: zpsz ucę ScL olczącą przylżoą wrtość cł przy użycu złożoego wzoru trzec ósmyc. De weścowe:, rńce przedzłów, uc, mlcz wdrtur prostyc

16 r: 6 Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury złożoe ewto-cotes przyłd zstosow wzoru prostoątów prol I d wzór trpezów 8 I p I eps wzór prol 8 I p I eps I p I I % eps

17 r: 7 Metody olczeowe - Budowctwo semestr - wyłd r Zde cłow umeryczego poęce rzędu wdrtury Mówmy ż wdrtur Q est rzędu r eżel: IW=QW dl wszystc welomów W stop meszego od r I ozcz wrtość dołdą cł stee welom W stop r r t, że IW QW Kwdrtury ewto-cotes oprte + węzłc są rzędu + dl przystyc + dl eprzystyc

18 r: 8 Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury złożoe ewto-cotes zeżość cągu wdrtur Olczmy cłę d orzystąc ze złożoego wzoru trpezów przy podzle odc [,] częśc, wdrturę olczmy ze wzoru: Q,

19 Metody olczeowe - Budowctwo semestr - wyłd r r: 9 Kwdrtury złożoe ewto-cotes zeżość cągu wdrtur Olczmy cłę orzystąc ze złożoego wzoru trpezów przy podzle odc [,] częśc, wdrturę olczmy ze wzoru: olcze prowdzmy w scemce z połoweem rou otrzymuemy cąg wdrtur Q,, zeży do dołde wrtośc cł d, Q Q Q,, ormuł pozwl wyorzystć poprzede olcze

20 r: Metody olczeowe - Budowctwo semestr - wyłd r Metod Romerg przyspeszee szyośc zeżośc cągu wdrtur zeży cąg wdrtur Q, : Q, Q,... Q,... I

21 r: Metody olczeowe - Budowctwo semestr - wyłd r Metod Romerg przyspeszee szyośc zeżośc cągu wdrtur zeży cąg wdrtur Q, : Q, Q,... Q,... I przedzł cłow [,] dzelmy =,,... rówyc częśc ozczmy:,,,,, wzór trpezów możemy zpsć:,, łąd wzoru wyos współczy c e zleżą od : I c c c 6,...

22 Metody olczeowe - Budowctwo semestr - wyłd r r: Metod Romerg dl =,= otrzymuemy: , 6, c c c c c c I c c c I Metod Romerg przyspeszee szyośc zeżośc cągu wdrtur

23 r: Metod Romerg Metody olczeowe - Budowctwo semestr - wyłd r przyspeszee szyośc zeżośc cągu wdrtur dl =,= otrzymuemy: I I,, c c c c 6 elmuąc perwsze słd prwyc stro dostemy: I, c I, c c I c,,, 6 c, 6,...

24 r: Metod Romerg Metody olczeowe - Budowctwo semestr - wyłd r przyspeszee szyośc zeżośc cągu wdrtur dl =,= otrzymuemy: I I elmuąc perwsze słd prwyc stro dostemy: I, ozcząc,, c c I otrzymuemy wdrtury Romerg, c c c c I m, m, m, m c m,, c 6,, 6 c, 6,...

25 r: 5 Metod Romerg Metody olczeowe - Budowctwo semestr - wyłd r przyspeszee szyośc zeżośc cągu wdrtur, - wrtość złożoego wzoru trpezów przy podzle przedzłu cłow rówyc częśc wzór wdrtury: m, m, m, m welośc m, moż zpsć w esończoe tlcy zeżość cągu m, m z reguły est dużo szysz ż cągu,m m wdrtury tworzące drugą olumę dgrmu są złożoym wzorm prol m, wszyste wdrtury tworzące dy wersz dgrmu oprte są tyc smyc rówoodległyc węzłc żd z wdrtur,,,,... est rzędu +

26 r: 6 Metod Romerg przyłd zstosow Metody olczeowe - Budowctwo semestr - wyłd r I d 8 wzór trpezów wdrtur Romerg wrtość dołd łąd procetowy wzoru trpezów łąd procetowy wdrtury Romerg Zde: zpsz ucę ScL relzuącą metodę Romerg, wyorzyst do olcze, ucę ScL ttrp. De weścowe:,,, m lcz terc. Wy: m,

27 r: 7 Kwdrtury Guss Metody olczeowe - Budowctwo semestr - wyłd r Prolem dl ustloego poszuuemy wdrtury o msymlym rzędze Q przylżące wrtość dołdą cł prolem sprowdz sę do odpowedego wyoru węzłów d A

28 r: 8 Kwdrtury Guss Metody olczeowe - Budowctwo semestr - wyłd r Prolem dl ustloego poszuuemy wdrtury o msymlym rzędze Q przylżące wrtość dołdą cł prolem sprowdz sę do odpowedego wyoru węzłów d dy est cąg welomów ortogolyc P,...,P,... welom P est -tego stop, tz. P, P P P d Kwdrturą o msymlym rzędze rówym + est wdrtur terpolcy, tóre węzłm są perwst +-go welomu ortogolego przedzle [, ], wdrtury te zywe są wdrturm Guss. A dl

29 r: 9 Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury Guss-Legedre przedzle [-,] welomm ortogolym są welomy Legedre': Współczy wdrtury Guss-Legedre' Q wyrżą sę wzorm d P! d A A P P',,..., =,,..., są perwstm welomu P +

30 Metody olczeowe - Budowctwo semestr - wyłd r r: Kwdrtury Guss -Legedre D uc cągł przedzle [,] sprowdzmy cłę do postc zormlzowe d du u F, u u u F du u F du u d u u du d,

31 r: Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury Guss -Legedre olczmy wrtość przylżoą cł d F u du u =,..., węzły wdrtury - tzw. puty Guss A współczy wdrtury + - lość putów Guss F u A F u u

32 Metody olczeowe - Budowctwo semestr - wyłd r r: Kwdrtury Guss-Legedre przyłd olczyć cłę wyzczee współczyów węzłów perwstów +-go welomu wdrtury Guss-Legedre dl = ]' [ ]' [ 8! P d d P ' P P A 5 d '' ]' [ 6 8, ' A A P P

33 r: Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury Guss-Legedre przyłd sprowdzee cł do postc zormlzowe: u, d du 5 d 5 d {[ u ] } du 8u u du olczee wrtośc wdrtury wrtość dołd = 9. u.5775, u.5775 F u 8 A u u u 8 u

34 r: Metody olczeowe - Budowctwo semestr - wyłd r Kwdrtury Guss-Legedre węzły współczy

35 r: 5 Metody olczeowe - Budowctwo semestr - wyłd r rudośc w cłowu umeryczym uc podcłow est osolw Modyuemy prolem: zm zmeyc cłowe przez częśc wyłączee łtwo cłowlego słd zwerącego osolwośc uwg: możlwe zoszee sę słdów! specle wzory cłowe Przyłd e d t t, d t dt e dt

36 r: 6 Metody olczeowe - Budowctwo semestr - wyłd r Olcze cłe welorotyc...,..., d... d? utury - welowymrowe odpowed wdrtur złożoyc dl uc - zmeyc podzł -wymrowe oszry regulre w tóryc ze są wzory wdrtur prostyc Z dl uc -zmeyc doouąc podzłu odc [, ] =,..., m częśc otrzymuemy m -wymrowyc oste -5 - Y X

37 r: 7 Metody olczeowe - Budowctwo semestr - wyłd r Olcze cłe welorotyc uogóloy wzór prol, y ddy? [, ] [ c, d ] [,] [c,d] wyzcz prostoąty oszr cłow przedzł [,] dzelmy częśc, przedzł [c,d] dzelmy m częśc. przymuemy ozcze =, =+ =,,...,, =, =-/ y =c, y =c+ =,,...,m,, y m =d, =d-c/m oszr cłow zoste podzeloy m prostoątów [, + ] [y,y + ] =,,...,-; =,,...,m-, w żdym z m prostoątów stosuemy uturę prostą uogóloy wzór prol:

38 Metody olczeowe - Budowctwo semestr - wyłd r r: 8 Olcze cłe welorotyc uogóloy wzór prol dl prostoąt ozczoego R, otrzymuemy ormułę:, 6 ],,,, [,,,, 9,, y y y y y y y y y ddy y R

39 r: 9 Metody olczeowe - Budowctwo semestr - wyłd r Olcze cłe welorotyc uogóloy wzór prol po zsumowu dostemy: [, ], y ddy [ c, d ] 9 m, y A Zde: zpsz ucę ScL olczącą cłę z uc dwóc zmeyc, wyorzystuącą uogóloy wzór trpezów. De weścowe:,,c,d,,,m. Przetestu dl uc,y=y oszrze [,][,] przymuąc =5,m= Zde: zpsz ucę ScL olczącą cłę z uc dwóc zmeyc, wyorzystuącą uogóloy wzór prol. De weścowe:,,c,d,,,m. Przetestu dl uc,y=y oszrze [,][,] przymuąc =5,m=

40 r: Metody olczeowe - Budowctwo semestr - wyłd r Olcze cłe welorotyc w przypdu gdy oszr cłow e est prostoątem, ostruuemy prostoąt zwerący oszr cłow, uduemy ucę pomocczą, tórą cłuemy przy użycu wzoru utur, y, y dl dl,, y y R

41 r: Metody olczeowe - Budowctwo semestr - wyłd r Cł podwó po tróące przyłd zstosow utury Guss D est uc dwóc zmeyc,y cągł ogrczo w oszrze tróątym D. Werzcoł tróąt wyzczą puty,y,,y,,y e leżące ede proste. Wprowdz sę podstwee ormlzuące wyścowy tróąt do tróąt prostoątego, rówormeego o werzcołc,,,,,: y y y y y y

42 r: Metody olczeowe - Budowctwo semestr - wyłd r Cł podwó po tróące przyłd zstosow utury Guss Zm ułdu współrzędyc wymg pomoże uc podcłowe przez tzw. co przesztłce: D - pole wyścowego tróąt D

43 r: Metody olczeowe - Budowctwo semestr - wyłd r Cł podwó po tróące przyłd zstosow utury Guss Fuc podcłow dl tróąt zormlzowego przymue postć: Końcowy wzór do olcz cł podwóe po tróące:..8.6, - współrzęde putów Guss w - współczy wdrtury lcz putów Guss w / / / / / / /

44 r: Metody olczeowe - Budowctwo semestr - wyłd r Cł podwó po tróące przyłd zstosow utury Guss Olczyć cłę z uc,y=+y- po oszrze tróątym zudowym werzcołc,,,,,

45 r: 5 Metody olczeowe - Budowctwo semestr - wyłd r Cł podwó po tróące przyłd zstosow utury Guss Zde: zpsz ucę ScL olczącą cłę z uc dwóc zmeyc, po tróące, wzorem -putowym Guss. De weścowe: współrzęde werzcołów tróąt, uc,y. Przetestu dl podego wyże przyłdu.

46 r: 6 Wzory utur Guss Metody olczeowe - Budowctwo semestr - wyłd r gotowe wzory dl prostyc gur geometryczyc trsormc cł zm zmeyc, przesztłcee uc podcłowe, y ddy F, d S d

47 Metody olczeowe - Budowctwo semestr - wyłd r r: 7 Wzór prostoątów d d

48 r: 8 uce ScL Metody olczeowe - Budowctwo semestr - wyłd r td olczee cł z uc zmeyc po oszrze opsym stą tróątów td olczee cł z uc zmeyc, oszr cłow opsy stą czworośców tegrte, tg olczee cł z uc ede zmee metodą wdrtur tspl olczee cł z uc slee ede zmee terpoluące zór putów ttrp olczee cł z uc ede zmee terpoluące zór putów wzór trpezów

49 r: 9 Metody olczeowe - Budowctwo semestr - wyłd r Podsumowe Różczowe cłowe umerycze Olcze perwsze druge pocode uc wzory dwuputowe, wzór tróputowy, pęcoputowy Cłowe umerycze sormułowe prolemu, oreślee sposou rozwąz Poęce wdrtury węzły wdrtury, współczy wdrtury, reszt wdrtury Kwdrtury ewto-cotes wyprowdzee wzoru wdrtury proste : wzór trpezów lcz węzłów = wzór prol lcz węzłów =

50 r: 5 Metody olczeowe - Budowctwo semestr - wyłd r Podsumowe - cd. Różczowe cłowe umerycze Złożoe wdrtury ewto-cotes Poęce rzędu wdrtury rząd wdrtur ewto-cotes Istot lgorytm metody Romerg Prolem wdrtur o msymlym rzędze welomy ortogole, wdrtur Guss-Legedre cłowe uc wdrturm Guss postć zormlzow cł, puty Guss

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Metody obliczeniowe. wykład nr 4. róŝniczkowanie przybliŝone całkowanie numeryczne

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Metody obliczeniowe. wykład nr 4. róŝniczkowanie przybliŝone całkowanie numeryczne Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Metody olczeowe wykłd r 4 róŝczkowe przylŝoe cłkowe umerycze Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Perwsz pochod ukc Ozcze: - ukc określo

Bardziej szczegółowo

VIII. RÓŻNICZKOWANIE NUMERYCZNE

VIII. RÓŻNICZKOWANIE NUMERYCZNE VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +

Bardziej szczegółowo

Metody numeryczne procedury

Metody numeryczne procedury Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc

Bardziej szczegółowo

Przypomnijmy tu znany wzór Taylora ze względu na jego wykorzystanie w zagadnieniach interpolacji, róŝniczkowania i całkowania numerycznego.

Przypomnijmy tu znany wzór Taylora ze względu na jego wykorzystanie w zagadnieniach interpolacji, róŝniczkowania i całkowania numerycznego. 3. Wzór Tlor. Przpomm tu z wzór Tlor ze względu ego worzste w zgdec terpolc róŝczow cłow umerczego. Jeśl uc e perwszc pocodc est cągłc w przedzle domętm [] to dl dowolc putów z przedzłu [] zcodz!! ξ gdze

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

Metody obliczeniowe. Semestr II

Metody obliczeniowe. Semestr II Metody olczeowe Semestr II Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch. Rozwązywe ułdów rówń lowych. Metody ezpośrede tercye.. Sposoy rozwązyw rówń elowych, zgdee optymlzc.. Aprosymc

Bardziej szczegółowo

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Aproksymacja funkcji

Aproksymacja funkcji Aprosymcj fcj. Ogóle sformłowe zgde prosymcj jedowymrowej Sformłowe zgde prosymcj D - prosymcj cągł: zleźć fcję p( x ) prosymjącą (zstępjącą, przylżjącą) dą fcję cągłą ( ) f x w przedzle [ ] p( x ) powy

Bardziej szczegółowo

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe. Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł

Bardziej szczegółowo

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 14

Obliczenia naukowe Wykład nr 14 Obliczeni nuowe Wyłd nr 14 Pweł Zielińsi Ktedr Informtyi, Wydził Podstwowych Problemów Technii, Politechni Wrocłws Litertur Litertur podstwow [1] D. Kincid, W. Cheney, Anliz numeryczn, WNT, 2005. [2] A.

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

Metody numeryczne i programowanie

Metody numeryczne i programowanie Meoy Numerycze Progrmowe Sro z 53 Wył. Meoy umerycze progrmowe Mrusz B. Bogc Zł Iżyer Procesowej Wyzł Techolog Chemczej Polech Pozńs e-ml: Mrusz.Bogc@pu.poz.pl www.fc.pu.poz.pl/cv3.hm Pozń 009 Mrusz B.

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka

Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka lgebr mcerzow e te (rót prowzorycz powtór (uwg: tutj jest ezupełe osewet otcj tj. mcerze czsem są pogruboe czsem ursywe (tlcs) proszę sę e przejmowć t po prostu wyszło) PEWNE WZNE OPERCJE MCIERZOWE ozcz

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1 METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

LABORATORIUM DYNAMIKI MASZYN

LABORATORIUM DYNAMIKI MASZYN LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,

Bardziej szczegółowo

Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej

Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci

Bardziej szczegółowo

Algorytmy metod numerycznych. Monika Chruścicka

Algorytmy metod numerycznych. Monika Chruścicka Algoryty etod ueryczych Mok Chruścck Ktolck Uwersytet Luelsk J Pwł II Wydzł Nuk Społeczych, Istytut Ekoo Streszczee Artykuł zwer chrkterystykę etod ueryczych orz podstwowych lgorytów etod ueryczych. Przedstwoe

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

I. APROKSYMACJA I INTERPOLACJA FUNKCJI JEDNEJ ZMIENNEJ

I. APROKSYMACJA I INTERPOLACJA FUNKCJI JEDNEJ ZMIENNEJ Oprcowł: mgr Słwomr Mlewsk Smodzely Zkłd Metod Komputerowych w Mechce L6, WL, PK APROKSYMACJA NTERPOLACJA FUNKCJ JEDNEJ ZMENNEJ Ogóle zgdee proksymcj moż opsć stępująco: De są pukty leżące ądź to do wykresu

Bardziej szczegółowo

Kwadratury numeryczne

Kwadratury numeryczne Kdrtur umercze Kdrturm umerczm zm zor służące do przlżoego zcz rtośc cłe ozczoch oszrze edo lu elo mrom. Olcze cłe ozczoch oszrze elomrom sprodz sę do elorotego zstoso drtur dl oszru edomroego. Ide postępo

Bardziej szczegółowo

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa

Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa Egzm dl Akturuszy z 5 mrc 0 r. Mtmtyk Fsow Zd Krok : Ay koc roku yło co jmj ml K mus spłć rówość: 000000 50 000 K 50 000 000000 K Krok : Lczymy st kot koc roku zkłdjąc, Ŝ koc roku mmy ml 000000 50 5000

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku?

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku? METODY NUMERYCZNE Wkłd. dr h.ż. Ktrz Zkrzewsk, prof.agh Met.Numer. wkłd Pl Aproksmc Iterpolc welomow Przkłd Met.Numer. wkłd Aproksmc Metod umercze zmuą sę rozwązwem zdń mtemtczch z pomocą dzłń rtmetczch.

Bardziej szczegółowo

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA .4. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA.4.. Wetor przemeszcze Rozwżmy bryłę (cło mterle) o dowolym sztłce meszczoą w prostoątym łdze odese O (rys. ) Rys. gdze ozcz położee (mesce) pt mterlego w tym łdze,,,

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

Wykład 8: Całka oznanczona

Wykład 8: Całka oznanczona Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy

Bardziej szczegółowo

PROGRAMOWANIE LINIOWE.

PROGRAMOWANIE LINIOWE. Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe

Bardziej szczegółowo

Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.

Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska. chł zdows Istytut echolog Iforcyych w Iżyer ądowe Wydzł Iżyer ądowe oltech Krows Iterpolc Iterpolc oże być trtow o szczególy przypde prosyc polegący ty że fuc prosyow fuc prosyuąc przyuą te se wrtośc w

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

Matematyka wybrane zagadnienia. Lista nr 4

Matematyka wybrane zagadnienia. Lista nr 4 Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest

Bardziej szczegółowo

Ocena wpływu niepewności estymacji parametrów modeli czujników pomiarowych na wartości maksymalnych błędów dynamicznych

Ocena wpływu niepewności estymacji parametrów modeli czujników pomiarowych na wartości maksymalnych błędów dynamicznych Polech rows Wydzł Iżyer Elerycze operowe edr oy ech Iforcyych Oce wpływ epewośc esyc prerów odel czów porowych wrośc sylych łędów dyczych Dr ż. rzyszof oczy rów 5.3.5 Pl wysąpe. Błędy w porch welośc słych

Bardziej szczegółowo

Ilość pożywki w gramach 0,

Ilość pożywki w gramach 0, Anlz wrnc: dwuczynnow (dwuerunow) z powtórzenm Krót urs osług omputer Z pomocą nlzy wrnc dwuczynnowe możn nlzowć wyn esperymentów, w tórych stosue sę nezleżne dw różne czynn. Rozptrywny ędze nstępuący

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 6. Plan Rozwiązywanie układów równań liniowych

METODY NUMERYCZNE. Wykład 6. Plan Rozwiązywanie układów równań liniowych -4-4 METODY NUMERYCZNE Wykłd 6. Rozwązywe ukłdów rówń lowych dr h. ż. Ktrzy Zkrzewsk, prof. AGH Met.Numer. wykłd 6 Pl Metody dokłde Metod elmcj Guss Metod Guss-Sedl Rozkłd LU Metod Kryłow Metod LR QR Zdefowe

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

Ramowy program laboratorium z metod numerycznych. Skrócone instrukcje do ćwiczeń laboratoryjnych.

Ramowy program laboratorium z metod numerycznych. Skrócone instrukcje do ćwiczeń laboratoryjnych. Rmowy progrm lbortorum z meto umeryczyc. Srócoe strucje o ćwczeń lbortoryjyc. erm Nr emty Wprowzee, zsy zlcze, regulm, BHP tp. Ćw. Błęy. czby zmeoprzecowe IEEE 754. Epslo mszyowy Ćw. Rozwązywe ułu rówń

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy

Bardziej szczegółowo

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:

Bardziej szczegółowo

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n 6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm

Bardziej szczegółowo

Metody numeryczne. 1. Numeryczna reprezentacja liczb w maszynie cyfrowej

Metody numeryczne. 1. Numeryczna reprezentacja liczb w maszynie cyfrowej 3-59 Krów, Al. Miciewicz 3 http://home.gh.edu.pl/~horzy pw. H6/35, C3/4 tel.: -67-439, 394 e-mil: horzy@gh.edu.pl Metody umerycze Litertur:. Z. Fortu, B. Mcuow, J. Wąsowsi, Metody umerycze, WNT, Wrszw,

Bardziej szczegółowo

Ad. poszczegolne metody obliczeniowe

Ad. poszczegolne metody obliczeniowe A. poszczegole etoy olczeowe. Oów włsośc uerycze reprezetc lcz rzeczywstych rytety zeoprzecowe orz przestw powy yć uwzglęe w oprcowywu lgorytów ueryczych. F-zór lcz zeoprzecowych -postw t-ołość L,U-zres

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n

a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr.........

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr......... WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI prowdząc(y)... grup... podgrup... zespół... seestr... roku kdeckego... studet(k)... SPRAWOZDANIE Z PRACY LABORATORYJNEJ r......... pory wykoo

Bardziej szczegółowo

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:

Bardziej szczegółowo

Rozszerzenie znaczenia symbolu całki Riemanna

Rozszerzenie znaczenia symbolu całki Riemanna Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem

Bardziej szczegółowo

Wykład 6. Stabilność układów dynamicznych

Wykład 6. Stabilność układów dynamicznych Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 6 ( ) Plan wykładu nr 6. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 6 ( ) Plan wykładu nr 6. Politechnika Białostocka. - Wydział Elektryczny Podstwy formty Wyłd r / Podstwy formty Pl wyłdu r etody tercyje rozwązyw ułdów rówń lowych: metod tercj prostej (Jcobego) metod Guss-Sedel Poltech Błostoc - Wydzł Eletryczy Eletrotech, semestr II, stud

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

ZMIENNE LOSOWE WIELOWYMIAROWE

ZMIENNE LOSOWE WIELOWYMIAROWE L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee

Bardziej szczegółowo

Ó Ą Ó Ó Ó Ó Ż Ą Ę Ś Ż Ś Ó Ó Ó Ż Ś Ó Ó Ć Ż Ę Óż ż Ę Ó Ę Ś Ó Ó Ą Ż Ś Ż Ż Ź Ż ź Ż Ż ż Ó Ę Ę Ż Ó Ó Ó Ó Ó Ż Ó Ó Ż Ó Ę ÓĘ Ó Ó ż Ó Ó Ż ź ź ź ź Ó ż Ę Ó Ś Ó ź ż ź ó Ó Ó Ó Ż Ó Ż ź Ś Ś Ś Ż ż Ż Ś Ż Ż Ż Ż Ż Ó Ż Ż

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Zasada wariacyjna mechaniki kwantowej

Zasada wariacyjna mechaniki kwantowej Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s

Bardziej szczegółowo

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; } Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca

Bardziej szczegółowo

BADANIE DRGAŃ RELAKSACYJNYCH

BADANIE DRGAŃ RELAKSACYJNYCH BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor

Bardziej szczegółowo

( ) ( ) 0. ( x) )... są wielomianami stopnia m = n + r + 1. INTERPOLACJA HERMITE A. Gdzie hkihk

( ) ( ) 0. ( x) )... są wielomianami stopnia m = n + r + 1. INTERPOLACJA HERMITE A. Gdzie hkihk INERPOLCJ N czy poleg zde terpolc? Zde terpolc est wyzczee przyblżoyc wrtośc fukc w puktc e będącyc węzł orz oszcowe błędu tyc przyblżoyc wrtośc.w ty celu leży zleźć fukce p( zwą fukcą terpolcyą którą

Bardziej szczegółowo

Zastosowania matematyki w chemii. Marek Kręglewski

Zastosowania matematyki w chemii. Marek Kręglewski Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.

Bardziej szczegółowo

ÓŁ Ą Ś ż ę Ę ć ż ż ę ż ż ń ż ń ż ę ę ż ż ż ż ę ż ć ę żę ę ń ę ęć ż Ę ż ż ę ę ń Ą ęć ń ę ć ęć ęż ę ń ęć ń ęć ęż ę Ł ę ęć ę ęć Ł ę ę ę ęć ęć ę ę Ę ęż ę ń ęć Ę ć ęć ę ę ż ę ęż ę ń ż ę ń ż ć Ą Ą Ą żę ż ż ż

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

Całkowanie numeryczne funkcji. Kwadratury Gaussa.

Całkowanie numeryczne funkcji. Kwadratury Gaussa. Cłkon nuryczn unkc. Kdrtury Guss. Rozżyy:. -D -punkto kdrtur Guss tod prostokątó. -D tod trpzó. -D -punkto kdrtur Guss 4. Zn grnc cłkon unoron d t dt 5. -D n-punkto kdrtur Guss 6. -D -punkto kdrtur Guss

Bardziej szczegółowo

W tym wykładzie zapoznamy się z podstawowymi metodami przybliżonego obliczania całek oznaczonych funkcji jednej zmiennej, tj.

W tym wykładzie zapoznamy się z podstawowymi metodami przybliżonego obliczania całek oznaczonych funkcji jednej zmiennej, tj. WYKŁAD 3 CAŁKOWANIE NUMERYCZNE Motywcj Wiele spotykych w prktyce cłek ie może być obliczo lityczie lub ich ścisłe obliczeie jest brdzo prcochłoe. Z drugiej stroy, brdzo często wystrczy zć jedyie przybliżoą

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

Technika optymalizacji

Technika optymalizacji Nelowe zde optymlzj sttyzej ez ogrzeń - PN ez ogrzeń dr Ŝ. Ew Szlh Wydzł Eletro Ker.: Eletro III r. EZI Sformułowe owe zd optymlzj elowej ez ogrzeń: Fuj elu f( : Zde optymlzj poleg zlezeu wetor zmeyh deyzyjyh,

Bardziej szczegółowo

Metody Numeryczne II rok Informatyka Stosowana Inżynieria Obliczeniowa

Metody Numeryczne II rok Informatyka Stosowana Inżynieria Obliczeniowa etody umeryczne II ro Informty Stosown Inżyner Olczenow etody numeryczne Błędy w olczench numerycznych Rozwązywne ułdów równń lnowych metod elmncj Guss Jordn Guss metody deompozycj (LU) Interpolcj Lgrnge,

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne cł zows Isttut Tecolog Iormcc w Iżer ąowe Wzł Iżer ąowe oltec Krows Różczowe umercze Różczowem umerczm zwm wzcze przblżoc wrtośc pococ uc srete ee lub welu zmec w zc putc obszru. Opercę tą moż woć wuetpowo:

Bardziej szczegółowo

ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż

Bardziej szczegółowo