Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka
|
|
- Jakub Kozak
- 5 lat temu
- Przeglądów:
Transkrypt
1 lgebr mcerzow e te (rót prowzorycz powtór (uwg: tutj jest ezupełe osewet otcj tj. mcerze czsem są pogruboe czsem ursywe (tlcs) proszę sę e przejmowć t po prostu wyszło) PEWNE WZNE OPERCJE MCIERZOWE ozcz trspozycję mcerzy ( ) dl mcerzy symetryczej: slr [ ] [mcerz ( )] jest zwsze symetryczy: [ ] [ ] Dl -wymrowego wetor olumowego : (wersz rzy olum) to slr - sum wdrtów elemetów wetor. (olum rzy wersz) to mcerz symetrycz stop zwerjąc w -tym werszu j-tej olume loczyy pr j dl -wymrowego wetor zwerjącego tylo jedy: dl -wymrowego wetor : dl -wymrowych wetorów olumowych b : b b ; b b WYZNCZNIK MCIERZY RZĄD MCIERZY MCIERZ ODWROTN Wyzcz mcerzy [oz. det() ] to slr ucj mcerzy wdrtowej. Jeżel jest mcerzą ( ) tj. [ ] do det()
2 Dl mcerzy ( ) det( ). Dl mcerzy (3 3) moż wylczyć wyzcz stępująco: det Mcerz odwrot do mcerzy wdrtowej (stop ) - jeżel steje - to mcerz róweż wdrtow stop (oz. - ) mjąc włsość: - - I Mcerz odwrot jest wyzczo jedozcze. Mcerz odwrot steje dl mcerzy tzw. eosoblwych czyl mjących włsość det () 0. by wylczyć mcerz odwrotą do pewej dej mcerzy możemy posłużyć sę metodą dopełeń (do odwrc mcerzy stop 3). Kro w tej metodze są stępujące:. Wylczmy mcerz dopełeń D o typowym elemece (w -tym werszu j-tej olume): d j (-) j M j gdze M j to wyzcz mcerzy powstłej przez wyreślee z -tego wersz j- tej olumy.. Wylczmy wyzcz mcerzy czyl det() żeby mcerz dło sę odwrócć mus wyjść róży od zer. Mjąc mcerz dopełeń możemy wylczyć det() wyberjąc dowoly wersz lub olumę D możymy przez odpowed wersz (olumę) mcerzy elemet po elemece ): det ( ) j d j co może być szybsze ż metody pode wyżej edy już mmy D. 3. Wylczmy osttecze: D det( ) czyl: /(wyzcz ) rzy mcerz dopełeń TRNSPONOWN (o czym łtwo zpomeć). Rząd mcerzy (eoecze wdrtowej) [ oz. rz() ] to stopeń jwęszego ezerowego podwyzcz powstłego przez wyreślee dowolych olum / werszy. Jest to msyml lczb lowo ezleżych olum (werszy) mcerzy. Oczywśce rząd e może być węszy od mejszego wymru mcerzy. Rząd jest zerowy gdy mcerz zwer wyłącze zer. Rozmte włsośc mcerzy (złdjąc że wszyste dzł d sę wyoć):
3 . (B) B ; (BC) C B (przeprszm le j to psłem to e było jeszcze CB to był eutrly przyłd). (B) - B - - ; (BC) - C - B rz (B) m [ rz() rz(b) ] 4. rz (B B) rz (BB ) rz (B) 5. det(cd) det(c) det(d) Dl mcerzy wdrtowej ( ) jeśl z 0 dl pewego wetor z 0 to det() 0. Dl mcerzy X (T ) jeśl Xz 0 dl pewego wetor z 0 to olumy mcerzy X e są lowo ezleże węc rz(x) <. Jeśl rz(x) to rz(x X) węc det(x X) 0 e steje z 0 t że (X X)z 0. FORMY KWDRTOWE; OKREŚLONOŚĆ MCIERZY Dl symetryczej mcerzy stop rozwżmy ucję -wymrowego wetor olumowego o postc: () zwą ormą wdrtową. Przyłd: [ ] Kryterum oreśloośc mcerzy jest z ormy wdrtowej dl DOWOLNEGO ezerowego : Jeżel > 0 to mcerz jest dodto oreślo Jeżel R /{ 0}: < 0 to mcerz jest ujeme oreślo Jeżel 0 orz 0 to mcerz jest dodto półoreślo Jeżel 0 orz 0 to mcerz jest ujeme półoreślo Jeżel jest dodto oreślo lub dodto półoreślo mówmy że jest eujeme oreślo. Jeżel jest ujeme oreślo lub ujeme półoreślo mówmy że jest edodto oreślo. Kżd mcerz dodto półoreślo lub ujeme półoreślo jest osoblw jej wyzcz jest zerowy poewż soro 0 dl ezerowego to 0 > olumy e są lowo ezleże węc det() 0. Przyłd: Dl mcerzy F ( m) rozwżmy oreśloość mcerzy symetryczej F F ( ). Form wdrtow z ezerowym wetorem m tu postć: F F () F F (F) F c c dl wetor c F poewż c c (c c c ) to sum wdrtów jest zwsze eujem. Soro t mcerz F F jest eujeme oreślo dl dowolego F ( mocy ostrucj). T
4 orm wdrtow może przyberć wrtość zerową dl ezerowego wtedy tylo wtedy gdy F 0 co mpluje rz(f)<m. Jeśl rz(f) m F 0 orm wdrtow przyjmuje tylo wrtośc dodte węc F F jest dodto oreślo gdy rz(f) m. Zstosowe: w dowodze twerdze Guss-Mrow mcerz eujeme oreśloą zpsujemy F F. Dl X spełjącego złoże KMRL X X jest dodto oreślo co przydje sę p. w wyzu że estymtor MNK mmlzuje sumę wdrtów reszt. POCHODNE CZĄSTKOWE FUNKCJI WIELU ZMIENNYCH w NOTCJI MCIERZOWEJ Dl y () - różczowlej rzeczywstej ucj zmeych (-wymrowego wetor ) rozwżmy -wymrowy wetor perwszych pochodych (grdet) mcerz wdrtową stop drugch pochodych (Hess) w otcj mcerzowej: ; D przyłdy: dl -wymrowego wetor wdrtowej mcerzy stop (to tylo stwerdzee tu że pochod cząstow ucj lowej olejo po to olejo ) z ole pochode ormy wdrtowej przyjmują postć: OPTYMLIZCJ FUNKCJI WIELU ZMIENNYCH Wruem oeczym ste estremum lolego różczowlej ucj w puce (*) jest zerowe sę w tym puce wetor perwszych pochodych cząstowych (grdetu). Dodtowym wruem wystrczjącym by optmum było globle jest by ucj był wlęsł (wypuł) co zleży od oreśloośc mcerzy drugch pochodych cząstowych (Hessu). Jeśl t mcerz jest dodto oreślo dl żdego zlezoy put zerow grdetu (*) to mmum; jeśl ujeme oreślo to msmum.
5 Przyłd: bde ucj () c B (gdze wetory c orz mcerz symetrycz BB to pewe stłe). ( B B ) B ( B B ) B Zuwżmy że oreśloość Hessu jest t sm j oreśloość mcerzy B jest t sm dl żdego ; wruem wystrczjącym dl ste estremum w puce (*) (mmum lub msmum to zleży od oreśloośc B) jest zerowe grdetów węc by B (*) -. Przyłd rozwęce: zbdjmy estremum sumy wdrtów reszt MNK jo ucj b: S(b) y y y Xbb X Xb S(b) to ucj wetor b z prmetrm y orz X t ucj to szczególy przypde () c B Tutj słd y y e zleży od b węc moż go pomąć wetor y X to zś X X to B. Bdmy perwsze pochode: S( b) X y ( X X )b b węc wrue zerow perwszych pochodych m postć (X X)b X y [zuwżmy że w () występuje tomst w pochodej ( ) węc w pochodej y X przechodz w X y ]. Wrue wystrczjący globlego estremum sprowdz sę do zbd oreśloośc (X X): S( b) ( X X ) bb tór jest t sm dl dowolego b bo e zleży od b. powyżej pozo że (X X) jest dodto oreślo gdy rz(x). Osttecze wrue mmlzcj sumy wdrtów reszt m postć: (X X)b X y co prowdz do wzoru estymtor MNK (por. Zjęc ) Wru oreśloośc mcerzy: Kryterum wyzczowe: Wodący mor główy stop (ledg prcpl mor o order ) mcerzy to wyzcz podmcerzy stop obejmującej elemety od do. Mcerz wdrtow stop m wodących morów głowych. Ozczmy je przez M (). Przyłd: 3 3 ; M( ) ; M ( ) ; M 3( ) det( )
6 Formę wdrtową oprtą mcerzy moż przedstwć stępująco: M ( ) M ( ) M ( ) M ( ) M ( ) () () gdze dołd postć ezerowego wyrże () e jest stot. T reprezetcj wyrźe sugeruje że wruem oeczym wystrczjącym dodtej oreśloośc mcerzy (czyl dodtośc ormy wdrtowej dl dowolego ezerowego ) jest dodtość wszystch wodących morów główych mcerzy. Wobec tego wyzcz mcerzy dodto oreśloej jest zwsze dodt. Wruem oeczym wystrczjącym ujemej oreśloośc jest by M () był ujemy oleje mory M () M 3 () td. zmeły z (czyl M () był dodt M 3 () ujemy td.) Wru wyzczowe półoreśloośc są brdzej złożoe e będą tu przedstwe. Kryterum wyorzystujące wrtośc włse: Mcerz jest dodto oreślo wszyste jej wrtośc włse są dodte. Mcerz jest ujeme oreślo wszyste jej wrtośc włse są ujeme. Mcerz jest dodto półoreślo wszyste jej wrtośc włse są eujeme przyjmej jed jest rów 0. Mcerz jest ujeme półoreślo wszyste jej wrtośc włse są edodte przyjmej jed jest rów 0. Mcerz wdrtow stop m wrtośc włsych. Wrtośc włse mcerzy symetryczej są zwsze rzeczywste.
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
SZTUCZNA INTELIGENCJA
SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów
1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA
.4. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA.4.. Wetor przemeszcze Rozwżmy bryłę (cło mterle) o dowolym sztłce meszczoą w prostoątym łdze odese O (rys. ) Rys. gdze ozcz położee (mesce) pt mterlego w tym łdze,,,
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Technika optymalizacji
Nelowe zde optymlzj sttyzej ez ogrzeń - PN ez ogrzeń dr Ŝ. Ew Szlh Wydzł Eletro Ker.: Eletro III r. EZI Sformułowe owe zd optymlzj elowej ez ogrzeń: Fuj elu f( : Zde optymlzj poleg zlezeu wetor zmeyh deyzyjyh,
MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.
CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej
Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 6 ( ) Plan wykładu nr 6. Politechnika Białostocka. - Wydział Elektryczny
Podstwy formty Wyłd r / Podstwy formty Pl wyłdu r etody tercyje rozwązyw ułdów rówń lowych: metod tercj prostej (Jcobego) metod Guss-Sedel Poltech Błostoc - Wydzł Eletryczy Eletrotech, semestr II, stud
Metody numeryczne w przykładach
Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej
Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
Rachunek wektorowo-macierzowy w programie SciLab
Rchuek wektorowo-mcierzowy w progrmie Scib Rchuek wektorowo-mcierzowy w progrmie Scib Dziłi liczbch Dodwie i odejmowie + b 3 + = 5 b = + (-b) 3 = 3 + (-) = + 0 = + (-) = 0 Rchuek wektorowo-mcierzowy w
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Metody numeryczne procedury
Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe
Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
Metody obliczeniowe. Semestr II
Metody olczeowe Semestr II Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch. Rozwązywe ułdów rówń lowych. Metody ezpośrede tercye.. Sposoy rozwązyw rówń elowych, zgdee optymlzc.. Aprosymc
VIII. RÓŻNICZKOWANIE NUMERYCZNE
VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +
Rozpraszania twardych kul
Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach
PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Plan wykładu. Sztuczne sieci neuronowe. Druga pochodna funkcji (f (x))
Pl wyłdu yłd 4: Algorytmy optymlzcj Młgorzt Krętows ydzł Iformty Poltech Błostoc Algorytmy grdetowe optymlzcj Algorytm jwęszego spdu e: Algorytm zmeej metry, Algorytm grdetów sprzężoych Algorytmy doboru
data utworzenia: styczeń 2006, data modyfikacji: styczeń 2011 WSTĘP DO METOD NUMERYCZNYCH
Słwomr Mlewsk Metody umerycze kospekt dt utworze: styczeń 6, dt modyfkcj: styczeń WSTĘP DO METOD NUMERYCZNYCH Metodą umeryczą zyw sę kżdą metodę oblczeową sprowdzlą do opercj rytmetyczych dodw, odejmow,
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Układy równań liniowych Macierze rzadkie
5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Lista 6. Kamil Matuszewski 26 listopada 2015
Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.
Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
Aproksymacja funkcji
Aprosymcj fcj. Ogóle sformłowe zgde prosymcj jedowymrowej Sformłowe zgde prosymcj D - prosymcj cągł: zleźć fcję p( x ) prosymjącą (zstępjącą, przylżjącą) dą fcję cągłą ( ) f x w przedzle [ ] p( x ) powy
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.
WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.
Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory
MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,
METODY NUMERYCZNE. Wykład 6. Plan Rozwiązywanie układów równań liniowych
-4-4 METODY NUMERYCZNE Wykłd 6. Rozwązywe ukłdów rówń lowych dr h. ż. Ktrzy Zkrzewsk, prof. AGH Met.Numer. wykłd 6 Pl Metody dokłde Metod elmcj Guss Metod Guss-Sedl Rozkłd LU Metod Kryłow Metod LR QR Zdefowe
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
MACIERZE I WYZNACZNIKI
MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }
Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.
AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy
r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów
Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.
chł zdows Istytut echolog Iforcyych w Iżyer ądowe Wydzł Iżyer ądowe oltech Krows Iterpolc Iterpolc oże być trtow o szczególy przypde prosyc polegący ty że fuc prosyow fuc prosyuąc przyuą te se wrtośc w
splajnami splajnu kubicznego
WYKŁAD 6 INTERPOLACJA FUNKCJAMI SKLEJANYMI (SPLAJNY) W tym wyłdzie omówimy prolem interpolcji przy pomocy tzw. funcji slejnych, zwnych też (żrgonowo) spljnmi. W przeciwieństwie do metod interpolcyjnych
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Prawdopodobieństwo warunkowe. Niezależność zdarzeń
RCHUNEK RWDOODOIEŃSTW WYKŁD. rwopoobeństwo wruowe. Nezleżość zrzeń rzył. Rzucmy rz symetryczą sześceą ostą. e zrzee {, 4, 6} - wypł przyst lczb ocze m szsę zjśc rówą 0,5. Zobylśmy formcję, że wypły jwyżej
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak
Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest
Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA
kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej
PODSTAWY ALGEBRY LINIOWEJ ALGEBRA MACIERZY
PODSTWY LGEBRY LINIOWEJ LGEBR MCIERZY Mcierzą prostokątą o m ierszch i kolumch zymy tblicę m liczb rzeczyistych ij (i,,...,m; j,,...,) zpisą postci ujętego isy kdrtoe prostokąt liczb M m M m Liczby rzeczyiste
Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = =
Pomr jego dokłdość. Kżdy pomr dje m wyk z pewą ylko dokłdoścą, węc obcążoy je epewoścą pomrową (błędem pomrowym). Pomry fzycze dzelmy : bezpośrede pośrede. Pomrm bezpośredm zywmy ke, kórych wrość lczbową
Metody Numeryczne II rok Informatyka Stosowana Inżynieria Obliczeniowa
etody umeryczne II ro Informty Stosown Inżyner Olczenow etody numeryczne Błędy w olczench numerycznych Rozwązywne ułdów równń lnowych metod elmncj Guss Jordn Guss metody deompozycj (LU) Interpolcj Lgrnge,
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
Zasada wariacyjna mechaniki kwantowej
Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
II. ROZWIĄZYWANIE RÓWNAŃ METODAMI ITERACYJNYMI 1
II. ROZWIĄZYWANIE RÓWNAŃ METODAMI ITERACYJNYMI.. Wstęp W iiejszm rozdzile przedstwim metod rozwiązwi rówń miejsc zerowch tch rówń orz rozwiązwi ułdów rówń. W celu zilustrowi podstw metod itercjej do obliczeń
Wszystkim życzę Wesołych Świąt :-)
Poniższe zdni pochodzą ze zbiorów: ) J. Rutkowski, Algebr bstrkcyjn w zdnich b) M. Bryński, J. Jurkiewicz, Zbiór zdń z lgebry Do kolokwium proszę też przejrzeć zdni z ćwiczeń. Wszystkim życzę Wesołych
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
PRZEPŁYWY MIĘDZYGAŁĘZIOWE. tablica przepływów międzygałęziowych
PRZEPŁYWY IĘDZYGŁĘZIOWE. [] Jeą z meto lzy zleŝośc wystęuących w rocesch tworze ozłu roukc mterle są metoy rzeływów męzygłezowych (lzy kłów wyków, lzy utoutut). zł Elemetrym osem ukłu est tut tzw. tlc
Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy
Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne
Macierz. Wyznacznik macierzy. Układ równań liniowych
Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.
a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n
CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.
CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.
11. Aproksymacja metodą najmniejszych kwadratów
. Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc