Rozpraszania twardych kul

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozpraszania twardych kul"

Transkrypt

1 Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne ne zeży od ąt zymutnego węc jedyną dopuszczn wrtoścą m jest m co dje ( r C R P (cos ponewż Y ( ~ P(cos gdze P (cos jest weomnem Legendre D r mmy do czynen ze swobodnym równnem węc rdn część uncj owej równ jest gdze me R A j ( r B n ( r jest wetorem owym ( j ( n to seryczne uncje Besse A B stłe normzcyjne Ponewż d r potencjł jest nesończony węc R Nłdjąc wrune cągłośc n uncję ową w r dostjemy równne n stłe A B A j ( B n ( Rozwżmy terz rozwązne grncę dużych odegłośc r ( edy uncje Besse możn przybżyć jo j ( r sn r n ( r cos r r r Rdn uncj ow przyjmuje postć A R sn r r B cos r (* r

2 Wyłd XVIII cd Rdn uncj ow wyrżon przez przesunęce zowe równ jest Korzystjąc z tożsmośc C R sn r r sn( sn cos cos sn dostjemy C C R cos sn r sn cos r (** r r Żądjąc równośc uncj owej w postc (* postc (** dostjemy równn A B C C cos sn Uwzgędnjąc wrune cągłośc w ostteczne dostjemy j ( tg n ( B tg A r mówący że Grnc nsoenergetyczn B j ( A n ( Rozłd n e prcjne jest szczegóne użyteczny gdy energ neson przez rozprszną cząstę jest n tye mł że Wówczs możemy zstosowć przybżene (!! j ( n ( (!! gdze (!! 5( T ztem ( tg (!!(!! Wdzmy że tg jest młą czbą węc tg co dje ( (!!(!! Ponewż oejne przesunęc zowe szybo ubywją Perwsze trzy znjdujemy jo 5 ( ( 5

3 Wyłd XVIII cd Soro oejne przesunęc zowe szybo ubywją uzysujemy dobre przybżene przeroju czynnego uwzgędnjąc zedwe perwsze e prcjne Perwsz prcjn ( = Njgrubsze przybżene poeg n wzęcu pod uwgę tyo perwszego wyrzu rozwnęc Wówczs mptud rozprszn równ jest ( ep P (cos Sorzystno tutj z przybżen ep P (cos A węc różnczowy przerój czynny wynos zś cłowty przerój czynny to d d ( uwzgędnono że Otrzymne wyn mj dwe cewe cechy: różnczowy przerój czynny ne zeży od ąt rozprszn czy jest zotropowy; cłowty zś przerój czynny jest cztery rzy węszy od przeroju czynnego n zderzene sycznych u o średncy tóry wynos s Wdzmy też ze ne jest spełnon tez twerdzen optycznego (mptud jest czysto rzeczywst co jest spowodowne przybżonym chrterem uzysnych wynów Perwsz drug prcjn ( = = Amptud rozprszn równ jest ( ep P (cos ep P(cos Uproszczene tego wyrżen jest neco sompowne Ponewż jest rzędu ( węc uwzgędnjąc neży uwzgędnć włdy od ż do trzecej potęg A ztem przybżmy ep ep Pmętjąc że P (cos P (cos cos orz podstwjąc ( / mptud równ jest

4 Wyłd XVIII cd ( cos Różnczowy przerój czynny wynos d d ( cos Ponewż wyprowdzjąc wzór n mptudę pomnęśmy wyrzy o potędze wyższej nż wodący włd do mptudy jest nowy w węc tyo włdy do przeroju czynnego o potędze ne węszej nż są wrygodne T ztem dostjemy d ( cos d Wdzmy że po uwzgędnenu z różnczowy przerój czynny m zgodne z oczewnm msmum d zerowego ąt rozprszn mnmum d Rozwżmy terz cłowty przerój czynny Ponewż włd do różnczowego przeroju czynnego zeżny od ąt (osttn wyrz zn gdy wyonmy cłowne po pełnym ące bryłowym znjdujemy Cłowty przerój czynny możemy też wyznczyć ze wzoru ( sn uwzgędnjąc perwsze dwe e prcjne co dje sn sn Przybżjąc sn zuwżmy że włd do cłowtego przeroju czynnego od jest rzędu ( Jeś t j poprzedno ogrnczymy sę włdm rzędu ( możemy węc włd od pomnąć Przybżywszy znjdujemy sn

5 5 Wyłd XVIII cd Cłowty przerój czynny możemy też zneźć orzystjąc z twerdzen optycznego tóre mów że ( Ponewż ( mmy czy cłowty przerój czynny w przybżenu perwszej prcjnej Chcąc zneźć dołdnejsze wyrżene n poczmy mptudę rozprszn uwzgędnjąc tyo perwszą ę prcjną ecz ż do rzędu ( Przybżmy węc ep co dje mptudę ( Ponewż ( twerdzene optyczne dostrcz ( czy ten sm wyn tóry zneźśmy poprzedno

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż

ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż Ń Ę Ę ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż Ę ż Ę ż ć ż Ę ż Ł ż ć ź Ę Ą ź ż Ź Ę ż Ę ź Ę ż ż ż ć ż ż ź ć Ę ż ż ż ż ź ć ż ż ć ź ż ć ź Ę ż Ę ć ź Ę ź ć Ę ź Ę Ą Ę ź ż ć ź ź ź Ę ż ć ć Ę Ę ż Ł ż ż ż

Bardziej szczegółowo

Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć

Bardziej szczegółowo

Ę ć ń ż ć Ń ń ż ć ć ń ż ć ń ź ń Ę Ń ń ń ż ć ż ć ć Ń ż ć ń ć ż ń ż ć ć Ń ż ć Ń ż Ń Ń Ń ż ż Ń ż ż Ń ń ź Ń ń Ń ń ń Ą ń ń ź ń Ń Ń ć Ę ż Ń ż ć ć ć Ę ńż ń Ą ć ć Ę ż ż ć ż ć Ń ż Ń ż Ń ż ż ń ć ń Ń ń Ę ż Ł Ń ż

Bardziej szczegółowo

Ą Ż Ł ś ż ńż ż ż ś ź ź ć ź ś ń ż ć ź ź ź ż ź ś ź ń ź Ę ż ź ź ź ż ż ś ń ż ż ś ż ź ż ź źń ż ż ż ź ś ś ż ś ż ż Ż Ł ń ż ś ż ń ź ź ż żń ść ż ż ń ń ń ń ń ż ś ź ż ń ż ś ń ż ć ż ś ż ż ć ń ż ż ź ż ć ż ż ś ż ż ć

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.

Bardziej szczegółowo

ć ż ć Ł ż Ę Ł Ę Ł ń Ę Ę ż ż ń ż

ć ż ć Ł ż Ę Ł Ę Ł ń Ę Ę ż ż ń ż ń Ę ż ż ż Ę ż Ż Ż Ó Ż ż Ę Ę ż ż Ż ż ż Ę Ą Ę ć ż ć Ł ż Ę Ł Ę Ł ń Ę Ę ż ż ń ż Ń ń Ę ń ż Ę ń żć ż Ż ć Ę Ż Ł Ż ń Ę ż Ż Ę ć ń ć Ę Ó ń ń ń Ę ń Ń ź ż ż Ę Ż Ż ń ż ż ń ż ć ż ńż Ż Ż ź Ę Ż ż Ę ń Ż ż ź Ż Ż ć ż ń

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ł ń ść ś Ż ś ś ć ś ś Ż ż ś ś ść ś śń ż Ż ć ś ń Ś ż ć ż ść Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ą Ż Ą ś ż ż ż ż ż ż ż ż ć ż ż ś ć ż ż ź ź ń ś ć ż ć ć ż ż ć ż ż ż ś ć ż ż źć ż ż ż ż Ż ż ń ż ż

Bardziej szczegółowo

Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć

Bardziej szczegółowo

Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć

Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć Ą ę Ą Ó ÓŁ Ę ę ęć ń ę Ą ń Ł ć Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć ę Ę ń ęć ń ęć ęć ęć ć ć ć ć ć Ę ę ę ć ć ę ń ęć ń ęć ęć ęć ń ć ć ę ń ę ń ę ę ź ć ć ź ę ź ć ę ę ć ę ć ę ń ę ń ź ź ć ę ę ć ć ć ę ć ę ę ę ń

Bardziej szczegółowo

ż ć ż ń Ń Ż ń ń ć ż ż ć Ż

ż ć ż ń Ń Ż ń ń ć ż ż ć Ż Ś Ą Ą Ł Ś Ł ż ć ż ń Ń Ż ń ń ć ż ż ć Ż ń Ż Ł ż ń ń ń Ę Ł Ż Ł Ł ż ż ć ń Ę ń ż Ć ń ŁĄ Ą ń ń Ć ć Ż ż Ń Ż Ż Ł ć Ę ń Ł ż Ś ć Ż ńę ń ż ń Ł Ż Ą ń ż Ź ż ć ż ń ć Ś Ż ń Ą ż Ą ć ć ńż Ś ń Ś Ż Ś ń ń Ł Ż Ł ż ń Ż Ś Ś

Bardziej szczegółowo

ć ć ź ć ć ć Ź ź Ź ź

ć ć ź ć ć ć Ź ź Ź ź ć Ż Ż ć ć ć ź ć ć ć Ź ź Ź ź ć ź ć ź ć ź ź ź ź ź ź ź ć ć ź ć źć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ć ć ć Ź ć ć ć Ó Ż ć ć Ź ć ć ć ć ć ć ć ć ć ć ć Ź ć ź ć ć ć ć ź ć ć ć

Bardziej szczegółowo

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż Ś Ą ż ż Ą ńż ń ż ż ż ż ż ż Ą ż żń ź Ś ż Ę ż ń ź ń ż Ę ź ń ż ż Ś ż ń ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż ż ż ż ż ż ż ń ń żń ż ż Ę ż Ś ż ż ż ż ć ń Ą ż ż ń ż ż ż ń ż ż ż ż ć Ł ż

Bardziej szczegółowo

Ą ć ć ć ć Ź Ź ź ź Ę Ł Ń Ą ź Ł Ę Ę Ń Ń Ź Ź ć Ę Ę Ś ź ć ć ć ć Ź ź ć ć ć ć ć ć ć ć ć Ź ć ć ć ć ć Ź ć ć Ć ć Ę Ą Ś Ń Ń ź Ń Ź ź ć ć ć Ą Ą ć ź ź ć Ę ć ź Ą ć Ń Ę Ę Ę Ę ć Ą Ę ć ź Ó ć ć Ń Ę Ń Ń ć Ś Ą Ę ć Ś ć Ń

Bardziej szczegółowo

Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę

Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę Ę Ń Ł ź ź Ż Ą Ł ć Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę ć Ż ć Ą ź Ę Ż Ę Ż Ą Ń ć ź Ł ć Ń ć ź ć ć Ń ć Ż Ę Ę ć ć ć Ą Ę Ę ź ć ć Ż Ż Ę ĘĘ Ż ć Ą Ę ć ć ć Ę ć ź ć Ś ź Ę ć Ź ć Ę ć Ę ź ć Ż Ż Ż ć Ś Ę ć Ż Ż ź Ł Ę ć

Bardziej szczegółowo

ń ń Ś Ż Ś ń

ń ń Ś Ż Ś ń ń ń Ś Ż Ś ń ć Ż Ś Ż ń Ś Ż Ż ń Ś Ó ń ć ć ć ć ć Ść Ę ź Ó ć ć źń ć Ś Ć Ż Ś Ć ŚĆ ń ć ź Ś ń ń Ż ć ń ć ń Ś ź ń ź ć ź ć Ę ń ć ć ć Ę ć Ó ń ć ź Ó ŻÓ ź ń ń Ć ć ź ć ń ź ń ć ń Ą ń ć Ż ń Ś Ś ź Ą ć ŚĆ ń ć źć ć Ę Ż ć

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze

Bardziej szczegółowo

Ń Ń Ń

Ń Ń Ń ź Ń ń ń ń ź ń Ń ń Ń Ń Ń ć ć ń ź ć ń ć ć ć ń Ń źń ń ń ć ń ć ć Ł Ą Ń ź ń ń ń ć ć ń ć Ą ć ć Ń ć ć Ń ć ć Ę ć ć ć ć ć ć ź ć ć ć Ń ć ć ć ć ć ń Ń Ń ć ć ć Ń Ń Ń ń Ń ź ź Ń Ń Ń Ę ń ć ń ń Ę Ń ć ć ń ń ź Ń ź ć ć Ę

Bardziej szczegółowo

Ę Ę Ę Ą ź Ę ń Ę ć ć ń ć ć ń Ą Ę ć ń źć ń ć ź ń ć ć Ę ć ć ć ć ń Ś ć ć Ć ć ć Ć ń ć ć Ć Ć Ś Ś ć Ś Ż ć ń ć Ć ń ć ń ć źć ć ć ć ń Ć ć Ć ń ń ń ń ń ń ć ź ć ń ć ć ć ć ć ć ń ź ń ć ń ź ć ć ć Ć ć ć ć ź ć Ć ć ć ć ć

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

Ż Ł Ź Ą Ó ź ź ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ć ć ć ć Ś ź ć ć ć ć ć ć ć ć Ą Ą Ż Ł Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

ń ń ń

ń ń ń Ą ź ć ń ń Ą ń ń ń Ą Ó ń Ą ć Ą Ń Ą ć ć ć ń ń Ą ć Ą ć ć ń ń ń ń ź ć ź Ą ć ć ć Ę ń Ó ń ń Ę Ą ć ń ń Ń ń ń Ń ć ć ń ź Ę ń ź ń ź ć ć ź ć ń ń ć ć ć ń ć ć ć ć ć Ę ć ć ź ć ź ń ć ć ń Ą ń ć ź ć Ą ź ć ń ć ź Ó Ś ć ń

Bardziej szczegółowo

ź ń ń

ź ń ń ń ź ń ń Ś Ł ń ń ż ź Ść ż Ść ż ż Ł ż ń ń Ę Ś Ś Ś Ę ń ż Ł Ś Ł ń Ś Ś ń ć Ść ż Ę ż Ć Ę ż ź ń Ł Ę Ę ź ż Ę Ś Ę ż ż ż Ę Ś ż ż ż Ść Ą ż ż ż Ę Ś Ę ż ż Ś ż ż ż Ś Ł ż ż ż Ę ż ż ż Ą Ę Ę ć ż ż ć ń Ą Ą ź Ę ńź ż Ę Ę

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

Ś ć Ś Ę Ś Ś Ś Ś Ę Ę

Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ł Ś Ę ź Ż Ż ź ź Ż Ś Ż Ś Ł Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ś Ę Ń Ę ć ć Ę Ś Ę Ś Ę Ś Ś Ś ŚĘ ć Ś Ś Ś Ś ŚĘ Ł Ś Ł ź Ę ź ź ź ź Ń Ś Ś Ń ź ć ź ź ź ź ź ź Ś ź Ż ź Ń ź Ś ź ź ć Ę ź Ę Ę Ś Ę Ę Ł ź ź Ę ć Ś Ś Ł Ś Ę Ś Ł Ł Ś ć Ł ź Ł

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

ll I 1 &*l;,, Ą Ń Ś Ą ć Ę Ś Ł Ę Ą ć Ą ć ć ź ć Ęć Ń Ę ć ć Ę ć ć Ę ć Ę Ę ć ź Ę ź ć ź Ę ć ć ź ź Ę ź Ą ź ź ź ć ć ź Ę ź ć Ę ć Ę Ąć ć ć Ę ć ć Ę ć Ę ć ć Ę ź ć Ą ć ź Ś ć Ą ć Ą ć ź ź ź ź ć ź ź Ę Ę ć ź Ę ć ź ź

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż

Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż Ż Ę Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż Ż ś ś ś ć ś Ż ć ź ż ś ż ć ź ź ź Ę ć ż Ń ść ć Ł Ż ś ść ś ż ć ż ć ć ć ć ć ść ć ś ś ć ż ź ć ć ż ś ć Ę ś ż ć ść ć ź ź ś Ź ś ść ś ś ć ś ż ż ś ś ś ś ś ż ś ś Ź ż ś Ś ś

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Ę ś Ł ń ś ś ć ć ś ś ś ń ń ń ść ń ść ś Ł ć ź ć Ę Ą ś ś ś ś ś ś ń ń źń ś ń ń ś ń ń ś ź ń Ę ń Ą Ę ś ś ć ń ś ń ń Ł ś ś ń ś ź ś ś ń ć ść ść ść ń ś ź ś ń ś ś ść ś ń ń ń ś Ę Ł ń Ą ś Ś Ę ń Ś Ę ść ś ś ń Ę ń ś ź

Bardziej szczegółowo

ć ź Ą Ł ć

ć ź Ą Ł ć Ł Ł Ł Ł ć ź Ą Ł ć Ę ć Ń ź Ń Ń ź Ń Ś Ń ź ć ć ć ć ć ć ć ć ć ć Ę ć ć ć ć ć ć ć Ł ć ć ć ć Ę ć ć Ę Ń Ą ć Ą ć Ę ć ć ć Ę Ę ć Ń ć Ą ć ć ć ć Ę ć Ę ć Ę ź ć ć Ę ć Ę Ę ć ć ć ć ć ć ć Ę Ś ć ć ć ć ć ć Ę ć Ą ć Ę ć Ę Ę

Bardziej szczegółowo

ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś

ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś Ł Ś ś Ą ś ć Ń ść ź ń ś ś ń Ę ńź ź ś ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś ś ń ś Ń ź ź ś ć ź Ę ś ść ś ść ś Ń ń ń ś ść ć ś ń Ę ś Ń ś ść ś ś ś ś ś ś ń ś ć ś ś Ń ń ś ń Ą ń ś ń Ń Ę ś

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

Ć ć ń Ć ń ć ć Ć

Ć ć ń Ć ń ć ć Ć ć Ł ś ś Ć ć ć ń Ć ć ń Ć ń ć ć Ć Ć Ć ń ć Ł ś ć ń ć Ć ś Ć ń ć ć ź ś ś ść Ł ść ś ć ź ć ś ć ś ć ć ć ć Ć ś ś ć Ć ń ś ź ć ź ć ś ń ń ń ś Ą źć Ć Ć Ć ć ź ć ź ś ć Ę Ć ś ć ś ć ć ś Ć ć ś Ę Ć Ć ć ź ć ć Ć ń Ę ć ć ń

Bardziej szczegółowo

Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść

Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść Ś Ś ś ś ś ś Ą Ą ź ź ć ź Ę ś ń ś ś Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść ć Ę ć Ą ś ś ń ń ć ś ś ń Ń ś ś ć ć ń ś ź ś ść ń Ź ń ść ś ń ń ść ś ś ń ść ń ść

Bardziej szczegółowo

Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź

Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź Ł Ą ń ń Ń ź Ą Ń Ń ź ń ń ń ń ź Ń ń Ń Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź ń ć ń Ń Ń ń ź ć ń Ń Ę ń Ń Ż Ń ń Ń ń Ń Ą Ń ć Ń Ń ź Ę ź ź ć ź ć ń ń ń ń ć ć ć Ń Ą ć Ą Ż Ó ć ń ć ń ć ć ź ź ć ć Ń Ń ć ń ń Ę ń ń

Bardziej szczegółowo

Ś Ę Ś Ą Ł Ę Ę Ę Ą ć Ę Ę ź ź Ń Ń Ę Ń Ń ź ź Ą ć Ą ć Ę Ą Ń Ń Ą Ę Ę ć Ą Ę ź Ą ć ć Ęć ć Ń ć ć ć ć ć Ś ć Ą ć ć ć Ń Ę Ś Ę Ę Ę ć Ę ć ć Ł ć Ń Ń Ęć Ę ź ć Ą Ę ź ć Ę Ę ź Ę Ą Ę Ą ć ź ź Ę ź Ę Ń ć ź ć ź Ę Ń Ę Ł Ę Ę ć

Bardziej szczegółowo

ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń

ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź Ź Ó Ń Ó ź ć Ź ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź ć Ź Ę Ę ć ć ź Ę Ę Ź ć Ó Ó Ś Ó Ń ŚĆ Ę Ś Ó ćć Ó Ś Ę Ś Ę Ę Ś Ś ć Ę Ó Ę Ó Ę Ń Ć Ś Ś Ś Ś Ó ŚĆ Ó ć Ń Ń Ó Ę Ó Ó Ó Ś Ę Ć Ó ć ć Ó ź Ę ć ć Ź ć ć ć ć ć ź ć Ź ć Ć ć ć Ś

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż

Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ż ć żń Ę ń żń Ę żń ż Ń Ą Ę ć ń ż Ł ń ć ź Ę ć ć ć ż ć ć ć Ę ń Ź ń Ę Ę Ę ń ń ż ż źń Ź ć Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ń ć żń żń ń ń ń ż Ł ć Ą ć ń ż ń ć

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy

Bardziej szczegółowo

ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ę Ł ć ż ć ż ć ę ę ę ż ć ż ć ę ż ż ć ę ę ę ę ę ę ę ę ę ż ę ę ę Ź ę ż ę ć ż ę ę ę Ź ć Ź ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ć ę ę ż ę ż ć ć Ść ć ę ć ć ż

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy

Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji

Bardziej szczegółowo

ć ć ć Ś ć Ż

ć ć ć Ś ć Ż Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż

Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż Ł Ł Ń Ń Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż Ł ń ż ż ż Ś Ż ŚĆ ż ń ź ż ć ń ż ż ż ć ż Ńż ń ż ć ż ć ż ż ż ć Ż Ś Ó ń ż ź ć ń ż ń ń ź Ą ż ż ń ż ć Ł ż ż ż ć ń ż Ż ż ż ć ń Ł Ś Ś Ł ź ć ż ń ż ż ć ń ń ż

Bardziej szczegółowo

z r.

z r. C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 9 / I X / 2 0 1 5 i m. h m. S t e f a n a M i r o w s k i e g o z d n i a 2 0. 0 9. 2 0 1 5 r. w s p r a w i e H o n o r o w e j O d z n a

Bardziej szczegółowo

Ą Ł Ę Ń Ą Ó ŚĆ Ś ć Ó ń ć ŚĆ ć ć

Ą Ł Ę Ń Ą Ó ŚĆ Ś ć Ó ń ć ŚĆ ć ć ń Ą Ą Ł Ę Ń Ą Ó ŚĆ Ś ć Ó ń ć ŚĆ ć ć Ś Ó ć ć ć ć Ż Ę Ż Ś Ć ń ć ń ć ć ć Ż Ż Ć ć Ż ć ć ć ć ć Ż Ż Ś Ć ń Ć Ó ć Ś Ś Ź ć ć ń ć ć Ż ć ć Ć Ż ń ć ć Ś Ć ć ŚĆ ć ć Ś ć Ż ć ć Ż ŚĆ Ś ń Ś Ż Ś ń Ż ń Ś ŹĆ Ś Ś Ś ń Ś ć Ó

Bardziej szczegółowo

WYKŁAD nr Wielomian M (s) ma pierwiastki wielokrotne oraz równe zero

WYKŁAD nr Wielomian M (s) ma pierwiastki wielokrotne oraz równe zero WKŁD nr. Welomn m perwt welorotne orz równe zero J zznczono poprzeno ążąc o uogólnen wzorów umożlwjących przetwene opowez elementów utomty opnego owolną trnmtncją przy owolnym ygnle wymuzjącym wprowzono

Bardziej szczegółowo

ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź

ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń ż ż ń ń ń ń Ę ż ż ż ż ż Ę ń Ę ż ż ż ńą ź ż ż ż Ę ń ż Ę ń ż ż ż ń ń ż ż ń Ę ź ż ż ż ż ń Ą ń Ę Ż ż ż ń Ł Ę ń ńń ż Ę ż ż ż ń Ę ż ż ńż ń ż ż Ś ż ń ż ż

Bardziej szczegółowo

Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż

Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż Ś Ż Ś ć ż Ś ż ź ż ż ż ć ż ć Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż ż ż ż ż ć ż ć ź ż ż ć ć ż ć ż ż ż ć ż ż ć ć ż ż ż ż ć ż ż ż ż ż ż ć ż ż ż ż ż ć ż ć ć ż ć ż ż ż ć ć ć

Bardziej szczegółowo