Rozszerzenie znaczenia symbolu całki Riemanna
|
|
- Bogumił Michalik
- 5 lat temu
- Przeglądów:
Transkrypt
1 Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem więc dl < d. Sąd w szczeólości. Cłowie różiczowie Tw. Niec i iec. Wówczs ucj jes ciął. jeśli jes ciął w pucie o jes różiczowl w pucie i =. Dow. Niec. Wierm dowole ie że + R jes oriczo M M Z i m{ mi{ M ciąłość Dow. Niec - pu ciąłości ucji. Wierm dowole ie że +. Wówczs m{ mi{ jes ciął w pucie. Sąd co impliuje lim Wiose. Jeżeli C o jes ucją pierwoą ucji i =. Tw. Newo-Leiiz Jeżeli i isieje ucj różiczowl że o.
2 Dow. Dl podziłu... { P wierm pu pośredie z w. Lre dl wi że jes o możliwe. Wówczs wszsie wrz sum z wjąiem i uleą reducji. Woec złożoej cłowlości jeżeli P d o. Sąd. Tw. cłowe o wrości średiej Jeżeli ucj jes ciął c: c Dow. jes ucją pierwoą ucji. Woec eo - różiczowl czli rówież ciął czli spełi zł. w. Lre więc c: -= c-=c -. Jeżeli o liczę zwm wrością średią ucji przedzile. Jeżeli jes ciął o c : c Tw. o cłowiu przez części dl cłi ozczoej Jeżeli i są różiczowle o { Dowód. Łwo zuwżć że ucje i. Ze woru = + i w. Newo Leiiz mm sąd ez. Tw. o cłowiu przez podswieie cłi ozczoej C : { jes c. B A d B A C : { jes c. Dow..Niec ędzie ucją pierwoą ucji. Wówczs jes ucją pierwoą ucji. z w. o różiczowiu ucji złożoej. Sąd
3 Zsosowie cłi Riem Zsosowi eomercze cłe I. Pole rpezu rzwoliioweo { : - ciąłe P II. Dłuość łuu rzwej Niec r : r z R ędzie ucją weorową oreśloą. W dą rzwą wpisujem łmą i ierzem res ór dłuości łmc. Jeżeli ędzie o sończo o rzwą zwm prosowlą. Tw. Jeżeli r C o rzw K :{ r jes prosowl m dłuość i l Szic dowodu. Dłuość łmej= r r z = z z = ={ rz w. Lre = ' ' z' ={przejście ricze ez. Przpde szczeól : Jeżeli K={ : C o l ' III. Ojęość rł Niec S ozcz pole przeroju rł V płszczz prosopdłą do osi OX w pucie i iec ucj S ędzie ciął przedzile. Wed V S
4 W szczeólości dl rł oroowej: V IV. Pole powierzci rł oroowej Pole powierzci rł oroowej prosmujem sumą pól powierzci sożów ścięc zreśloc przez łmą wpisą w dą rzwą. P Zsosowi izcze cłe V. Dro prze w rucu zmiem Niec pu meril porusz się po płszczźie lu w przesrzei ze zmieą prędością v v v v. Ozczm v v v v v z Dro prze przez pu w przedzile czsowm wrż się wzorem L v przemieszczeie r v v v v z z VI. Prc wo przez zmieą siłę dziłjącą wzdłuż prosej Złóżm że rówolele do osi OX dził zmie sił. Prc wo przez ę siłę od puu = do puu = wrż się wzorem W. VII. Ms odci merileo Złóżm że odcie odrzo jes msą o ęsości liiowej. Wówczs jeo ms wrż się wzorem m.
5 r r Pole oszru zdeo w ułdzie ieuowm r r ;. Dzieląc przedził rówc części i przliżjąc pol orzmc włów polmi wciów ołowc uzsujem wzór P r d. Dłuość rzwej dej rówiem ieuowm r r ; wliczm przedswijąc ą rzwą w posci prmerczej r cos ;. Sąd wliczm ' ' r' r. r si Woec eo l r' r Przłd. Olicz pole powierzci i owód iur oriczoej rzwą zdą ieuowo r si.nrsuj ą rzwą w ułdzie współrzędc P si d l si d si cos si si cos cos si d si cos cos si si cos d si cos si cos 8 d cos d. Cłę Riem moż worzsć do oliczi pewc ric dosrzejąc w pewc wrżeic sum cłowe. A oliczć lim jpierw do posci przeszłcim ją 5
6 lim lim lim i = lim = i cł przedswi pole I ćwiri oł. =. Oliczć dłuość rzwej zdej rówiem ieuowm r. Rozwiązie Dłuość rzwej dej rówiem ieuowm r r ; wliczm przedswijąc ą rzwą w posci prmerczej r cos ;. Sąd wliczm r si ' ' r' r. Woec eo l r' r W rozwżm przpdu l 5 6 u 6u du u 6 du 5 6 u 6 udu 6
takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
RÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.
WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k
dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )
Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi
CAŁKA KRZYWOLINIOWA NIESKIEROWANA
Auomy i Rooy Aliz Wyłd 4 d Adm Ćmiel cmiel@gh.edu.pl AŁA RZYWOLINIOWA NIESIEROWANA Niech ędzie płsim lu pzeszeym łuiem głdim o pmeyzcji: x : y weoowo ; ) z z [ ] Uwg: Złożeie głdości x,, z, ) gwuje posowlość
460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n
6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
Struna nieograniczona
Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Ć Ę Ę ż ŁĄ
Ó Ń Ń Ń Ą Ę Ź ŚĘ Ś Ć Ę Ę ż ŁĄ ż Ą Ś Ą Ś ź ż ź Ś Ę Ę ź Ą Ę ż Ą ż ż ż Ą Ś ż ż ż ć ż ż ć ż ż ć ć ż ż Ą ż ż ż Ę Ę Ę ż Ś ż Ą Ę Ź Ą ż Ą Ę ż ż Ś ż ż ż ż Ł Ę ć ż Ś ż ż ż ż ż Ś Ę ż ż Ę Ę ż Ę ć ż ż ż Ś ż ż ć ż Ę
Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski
Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz
ŁĄ Ę ę ę Ę ę ę ę ę ę ŁĄ ę Ą ę ę
ŁĄ Ą ÓŁ Ą Ą ŁĘ ÓŁ ŁĄ Ę ę ę Ę ę ę ę ę ę ŁĄ ę Ą ę ę ć ę ę ę ę ę ę ę Ę ę ę ę ę ę ę ę ę ęć ę ęć ę ę ę ę ęć ę ę ę ę ć ę ę ć ć Ę ć Ę ę ć ę ę ę ę ę Ą ę ę ę Ę Ą ęć ę ęć ę Ę ęć ę ęć ę ę ę ęć ę ęć ę ę ę ęć ć Ę ę
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
ÓŁ Ą Ś ż ę Ę ć ż ż ę ż ż ń ż ń ż ę ę ż ż ż ż ę ż ć ę żę ę ń ę ęć ż Ę ż ż ę ę ń Ą ęć ń ę ć ęć ęż ę ń ęć ń ęć ęż ę Ł ę ęć ę ęć Ł ę ę ę ęć ęć ę ę Ę ęż ę ń ęć Ę ć ęć ę ę ż ę ęż ę ń ż ę ń ż ć Ą Ą Ą żę ż ż ż
Mechanika teoretyczna
ktestki geometcze Mecik teoetcz Wkłd 9, i ktestki geometcze figu płskic. Główe cetle osie ezwłdości. Pole powiezci Momet sttcz współzęde śodk ciężkości. Momet ezwłdości Momet odśodkow główe cetle osie
Ż ś ś ś ń Ż ś
Ł ÓŁ ń ś Ś ń ń ń ś ń Ż ś ś ś ń Ż ś ś Ś ń Ż ść ń ś Ę ń ś ś ś ś ś ś Ż ń ś Ź ś ść ś ś ś ś ń ś ść Ż ś ś ś ś Ą Ś ń ś ś ń ś ś Ż Ż ś ć ś ś ś ś Ż Ż Ż ść ń ś ś ć ś ś ś ś Ż ść Ł Ż ś Ź ś ś Ę ś Ż ć Ż Ż ć ć ń Ż ć ć
Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe:
: R A R, A przedział A, Wykład III Graice ukcji określoa w, S \ Deiicja 3. (deiicja Caucy eo raicy ukcji) : D U,, ( ) : ot Iaczej: Uot D U K M U ot U ot K M Graice iewłaściwe: k K R D M K K R M R D De.
Ó Ą Ó Ó Ó Ó Ż Ą Ę Ś Ż Ś Ó Ó Ó Ż Ś Ó Ó Ć Ż Ę Óż ż Ę Ó Ę Ś Ó Ó Ą Ż Ś Ż Ż Ź Ż ź Ż Ż ż Ó Ę Ę Ż Ó Ó Ó Ó Ó Ż Ó Ó Ż Ó Ę ÓĘ Ó Ó ż Ó Ó Ż ź ź ź ź Ó ż Ę Ó Ś Ó ź ż ź ó Ó Ó Ó Ż Ó Ż ź Ś Ś Ś Ż ż Ż Ś Ż Ż Ż Ż Ż Ó Ż Ż
ź Ń ć Ą ź Ł ź ź ź ź Ę Ń ć Ą Ę
ÓŁ ÓŁ Ó Ó ź Ą ź Ń ć Ą ź Ł ź ź ź ź Ę Ń ć Ą Ę Ę Ą Ę Ń Ą Ę Ą Ą Ę Ł ć ź ć ź Ę ć ć ć Ę ć ć ć ć ć ć ć ć ć Ł Ą Ą Ł ć ć ć Ą Ą ź Ą Ł Ą ź ź Ó Ę Ę ź ć ź ź Ą ć Ą ć Ę ć Ę ć ć Ć ć ć Ć ć Ź Ć ź Ć ć Ą Ł Ń Ż ć Ź Ą ć Ń ć
ź -- ć ł ź ł -ł ł --
------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą
ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż
Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń
Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą
Ą ź Ą Ą Ź Ń ź Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą Ó Ó Ź Ó Ó ć ć Ź ć Ł Ź ć ć Ą Ó Ź Ó Ó ć ć ć Ł Ę ź Ę Ę Ę Ę Ę Ę Ę ć Ę Ź Ę Ę ć Ó Ę ć Ó ź Ę ÓÓ Ę Ę Ź Ó Ó ÓŹ Ł Ź Ź Ę ć Ó Ó Ź Ó Ó Ą ÓĘĘ Ó Ą Ź Ó Ó Ź Ć ÓŹ Ó ć Ą Ć Ę Ć
Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó
Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
ć Ń
ć Ń ć ź Ł Ń Ń ź Ł Ń Ń Ń Ń ź ź ć Ń ź Ń Ń ź Ś Ś ź Ś Ś Ń Ń Ń Ę Ś Ę ć ź ź Ę Ś ź Ą ź ź Ś Ś Ę ć Ń Ń Ń Ń Ń ć Ń Ń ć Ł Ł Ń Ę Ę ć Ę Ę Ę ź Ą ć Ł Ę Ę Ś ć ć Ę Ł Ę Ż Ą ź Ł Ą ź Ę ź ć Ę Ł Ę ćł Ł Ł Ą ź Ł Ę ź ć Ę Ę
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
Z e s p ó ł d s. H A L i Z
C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g
ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż
ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń
Ł ś Ł Ą ś Ź Ł ś Ł ś ź ś ę ÓŁ ÓŁ ź ź ś ś ę ę ź ć ś ś ę ć ę ś ę ś ź ę ś ę ś ś ś ę ę ć ę ś Ł ę ę ę Ę Ą ś ś ś Ł ś ę ś Ł Ń Ł Ń ę ś ś ę Ż Ż ś Ż ś ś Ż ś ź ś ś ź ś ę ś ę Ń ę ę ę ś ę ś ę ś ź ś Ł ś ś ś ś ę ś ś
Ą Ł Ł Ł Ś ż ź ź Ł Ś Ą Ł Ś Ś Ł Ó ż Ł Ś Ą ć ć ż ż Ą ż ć ż ż ć ć ć Ś ć ż Ś ż ż Ą ć ż ż ć ć ć ć ż ż Ś ć ż ż ÓŁ ż ż ż Ł Ł Ś Ó ć ż Ł ż ż ż ż ż Ć Ó Ó ż ż Ó Ł Ł ż Ą ż ż ż ż ż ż ż ż ż ć ż ż ć ż ż ż ć ż ż ż Ł ć
Ń ÓŁ Ł Ś Ł Ł Ś ÓŁ Ł Ś Ń ÓŁ Ł Ń Ź ę Ą ę ę ę ę ę ę Ź ę ć ć ę ę ę ę ę Ź ć ę ę ę ć ć ę ę ę Ł ę ę ę Ł Ł ę ę ę ę ę ź ę ę ę ę ź ę ć ę ć ć ę ę ź ź ę ć ę ę ź Ź ę ź ę ę ć Ź Ą ć ć ć ę ę ę ę ę Ź ź ę ć Ł ź ę ę Ź Ę
Ł ÓŁ Ł Ą Ś Ą Ą Ś Ś ć ć ć ć ć ć ć ć ć ć ć Ę ć ń ć ć ć ć ć ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ń ń ć Ś ń ć ń ć ń ć ć Ś ć Ż Ś Ś ń Ł Ń ń ć ć ć ć Ś ń
Ł Ń Ś ś ę ę ś ś ś ś ę ę ę ę ś ś ę ś ę ś ę ś ś ć Ą ś ę ś ś ę ś ę ś ś Ń ś ś ś ś ś ś ę ę ę ę ś ś ę ć ś ś ę ś ę ś ę ę ś ę ś Ą ę ś ę ś ś ś ś ę ś ś ę ę ś ś ę ś ś ś ę ę ę ś ś ś ę ś ę ś ę ć ś ś ę ś ę ę Ą ę ę ę
Ą Ą Ł Ś ÓŁ Ł ć ć ź ÓŁ ć ć Ś ć ć Ą ć ć ć ź ć ć ć ć ć Ą Ó ÓŁ ć ć Ł Ł ź Ś ć ć ć ć Ł Ł ć ć Ł Ł Ł ć Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ź Ż ź Ł ć Ż Ć Ż Ś Ż ć ć ć ć Ł Ż Ś ć Ś ź ć ź ć ć ć ź ć Ś Ź ŚĆ ź ć ć Ś Ś
Ż ś ćł ę ś ś ź ć ę ł ś ś ę ę ę ę ę łę ę ś ę Ś ę ę ł ę ę ę Ń ć Ś ć ę ś Ś Ź Ć ę ę Ę ę ś ę ł ę ę Ć ł ę ć ę ś ę ę ę ść ę ź ś ś ę Ć ę ę ę ł ć ź ę ć ś ł
Ą ł ł ś Ń ś ę Ź ł ę Ł ść ę ę ę ś ćź ł ę ś ć ę ś ę ę ę ę ś ęś ś Ż ś ćł ę ś ś ź ć ę ł ś ś ę ę ę ę ę łę ę ś ę Ś ę ę ł ę ę ę Ń ć Ś ć ę ś Ś Ź Ć ę ę Ę ę ś ę ł ę ę Ć ł ę ć ę ś ę ę ę ść ę ź ś ś ę Ć ę ę ę ł ć ź
Temat: Wybrane zagadnienia kinematyki mechanizmów. Ruch punktu: prostoliniowy, krzywoliniowy (np. po okręgu, elipsie, dowolnej krzywej)
Tem: Wybre zgdiei kiemyki mechizmów Ruch puku: prosoliiowy, krzywoliiowy (p. po okręgu, elipsie, dowolej krzywej) Ruch bryły: posępowy, obroowy, płski, kulisy, śrubowy, dowoly. Liczbę iezleżych współrzędych
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
N a l e W y u n i k a ć d ł u g o t r w a ł e g o k o n t a k t u p o l a k i e r o w a n y c h p o w i e r z c h n i z w y s o k i m i t e m p e r a
J L G 3 6 6 P A W I L O N O G R O D O W Y J L G 3 6 6 I N S T R U K C J A M O N T A V U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p a w i l o n u o g
ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó
ć ń ó ą ś ą ą ż ó ó ą ż ó ś ą ś ą ś ć ż ść ó ó ą ó ą ń ą ę ą ę ż ń ą ó ś ą ą ą ń ó ą ą ą ś ą ó ż ś ęż ęś ś ń ą ęś ś ą ą ś ż ś Ę ę ń Ż ą ż ń ą ą ą ę ą ę ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę
ł ó ś ó Ę
ł ó ÓŁ Ł Ó Ą ć ł ś ł ś Ś ł ł ó ł ł Ś ł ż ł ł ó ł ń ó ń Ę ł Ę ó ł ó ś ó Ę ł ń ł ó ń ł ó ś ó ł ł ł ł ń ó ł Ś ń Ę ó ł ó ś ó ł ó ł ół Ą Ł ł ł Ą ł ó ó ł ż ł ł ł ł ł ł ł ł ó ł ł ł ł ł ł ł ł ół ó ó Ą ó ś ó ł
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
ż ń ź ń Ł ń Ż ż ż ż ż Ż ń ń ń ń ć
Ó ź ż ń ć Ą ż ń ź ń Ł ń Ż ż ż ż ż Ż ń ń ń ń ć Ó ń Ź ć Ą ć ń ń ż ń ż Ż ż ń ż ń ń ń ń Ź Ż ń Ż ż ń Ż ć ć ż Ś ń Ż ż ń ż Ę ż ń ń ć Ę ż ć ż ć ż ć ż ż ć Ź ć Ż Ó ż ń ń ź Ł ń ć Ó ż Ż ń ń ż ń ż ć ż ń Ź ń ń ń ń ż
Ł Ł Ó Ś Ż ż Ń Ł
Ł Ó Ł Ń Ń Ł Ł Ó Ś Ż ż Ń Ł ÓŁ Ń ź Ł Ż ć ć ż ż Ś ź Ę ź ż ż Ś ż Ę ż Ę Ż ż Ż ż ć ŚÓ ć ż ż Ć Ś ć ż ż Ę ż ż ć ż ż ż ć ż ż ż ć ż ż ż ć ć Ś Ż ć ż ż ż ź Ą ŚĆ Ą ż ż ż ż ż ć ż ż ć ż ć ż ż ż ć Ę ż ż ż ć ż ć Ę Ż ć
ń ź ź ń ń ź ć Ń ń Ż ń
Ę Ę ń ń ń ć Ń ć ć Ń ź ń ć ć ź ć ź ń ź ź ń ń ź ć Ń ń Ż ń Ł Ł ń Ę ź ź Ś Ś ź ń ń ź ń ń ń ń Ś ź Ę ź ń Ą ń ć ć ń ć ń Ą ć ź ź Ś ź Ś ń ń ń ń ń ń ć ń ń Ą ć ń Ś ń ń ź ź ź ć ć ń Ł Ę ń ć ń ń ź Ń ź ń Ś Ś Ś ć ń ć ź
Analiza Matematyczna
Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził
Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać
met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe
Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó
Ł ÓŁ Ł Ż Ę Ł Ł Ł Ł ó ż ó ó ó ó ó Ń ó ó ó ó ó ó Ł Ę Ł ó ó Ł ó Ę Ł Ż Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó ó ó ó Ń Ć Ż ó Ż Ę Ś ó ó Ą Ę ż ż ż Ń Ń ż ć Ść ó ŚĆ ó Ę ć ż Ź ŚĆ ź Ę Ś ć ó ó Ś ż ź Ó
ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę
ą Ś ą ą ą ż ź Ź ó ż ą ń Ś ź ć ą ą ć ź ć ó ó ą ó ż ą ń ą Ę ą ę ż ń ą ó ą ą ą ą ą ą ą ó ź ń ęż ć ą ę ą ą Ń ó ż Ęć ę ą ż ż ń ż Ó ą ż ń ń ą ą ó ą Ę ęż ęż ęź Ś ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń
Ń Ł Ł
Ń ź Ż Ń Ł Ł ĄŁ Ź ć ć Ó Ś ć Ź Ś Ż ć Ł ć ć ć Ą Ż ć Ż ć Ż Ą ć Ą Ś Ł Ł Ś Ń Ź ć Ó Ź ź ĄŁ Ą Ł Ą Ó Ś Ź Ż Ń ć Ą Ź ź Ź Ą Ź Ż Ź ź ć Ż Ż Ż Ś Ż ć ź Ć Ś Ź ć Ź ć Ż Ź Ó Ł ÓŁ Ł Ó Ł Ź Ś Ż Ź Ą ź Ę Ą Ś Ź Ź Ę Ś Ń Ż Ź Ł ź
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Zastosowania całki oznaczonej
Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego
ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż
Ł ę ź ę ż ę ć ęż ę ę Ł ć ę ę ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż ż ż ę ę ż ć ę ę Ń ę ę ż ę ę żę ż ć ę ć ę ę ć ę ć Ź ż ć ę ę ę Ą ę ę ę ź ę ż ę Ó ż ę ę ż ć ć ź ż ę ę ę ż ę ż ć ę ę ż ę ę ż ż ć ę ę
nazywamy n -tym wyrazem ciągu ( f n
Rk II Temt 7 SZEREGI FUNKCYJNE SZEREG POTĘGOWY SZEREG TAYLORA Ciąg ukcyjy Szeregi ukcyje Zbieżść jedstj Szereg ptęgwy Prmień zbieżści szeregu ptęgweg Szereg Tylr Ciąg ukcyjy Niech U zcz iepusty pdzbiór
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych
Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3
To sprwdzi ośości ści ociążoyc pioowo wg eody uproszczoej zgodie z P- 996- UWAGA: ośość ści eży sprwdzć żdej odygcji, cy że gruość ści i wyrzyłość uru ścisie są ie se wszysic odygcjc..... 5. De: rodzje