Kwadratury numeryczne
|
|
- Aleksandra Nowicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Kdrtur umercze Kdrturm umerczm zm zor służące do przlżoego zcz rtośc cłe ozczoch oszrze edo lu elo mrom. Olcze cłe ozczoch oszrze elomrom sprodz sę do elorotego zstoso drtur dl oszru edomroego. Ide postępo prz cłou umerczm est zsze t sm, moce zstępuem fucę podcłoą fucą łtą do scło ltczego (elom drodze terpolc, stępe fucę terpoluącą cłuem ścśle (ltcze. W rezultce otrzmuem zór umerczego cło. W zleżośc od sposou postępo prz orze położeń ęzłó terpolc przedzle cło możem meć do cze z drturm z: zmętm ońcm (ońce przedzłu cło chodzą do zoró, ęzł są rozmeszczoe róomere cłm przedzle cło, otrtm ońcm (ońce przedzłu cło e chodzą do zoró, ęzł są rozmeszczoe przedzle cło eróomere, t zmmlzoć łąd drtur. Przłdem drtur perszego tpu są drtur Neto-Cotes, drtur drugego tpu drtur Guss. N począte rozżm prodzee lu perszch drtur tpu Neto. Zgode z ugm zpsm poże, opercę zcz cł: d, ( przeprodzm duetpoo. Nper doom terpolc fuc elomem Lgrge stosoego stop (ozczoego dle o, stępe fucę terpoluącą scłuem. Wzor ogóle tm przpdu przmuą stępuącą postć:. ( Po ltczm ou cło (, dl orete rtośc, pmętąc o róomerm rozmeszczeu ęzłó, otrzmm ogól zór cło umerczego cłuąc ścśle elom stop. Podm terz l perszch drtur tpu Neto: terpolc elomo stop, czl fucą stłą: ( ( ( (, (
2 terpolc elomo stop, czl fucą loą: ( ( L ( ( L ( [ ( ( ] terpolc elomo stop, czl fucą drtoą: ( ( ( [ ( ( ( ] terpolc elomo stop, czl fucą trzecego stop: ( ( ( 8 [ ( ( ( ( ], (, (, ( Kdrtur te oszą oleo z zoró prostoątó, trpezó, Smpso Neto. Dołdość drtur moż podeść zęsząc dołdość terpolc (ptrz rozdzł pośęco terpolc. W szczególośc est to możle prz rezgc z ruu róomerego rozmeszcze ęzłó terpolc. I t, eżel ęzł terpolc zostą przęte mescch zeroch elomó Legedre, ędzem mel do cze z drturm tpu Guss Legedre. Poeż elom Legedre podoe elom Czesze (ptrz rozdzł Iterpolc mą szste mesc zeroe przedzle [,], to stdrdoo zor te są pode dl tego łśe przedzłu, óczs glądą stępuąco: gdze ( ξ dξ ( ξ, (7 ozczą g, ξ ęzł drtur. Jeżel cłoe m ć dooe doolm przedzle [, ] oecz est zm zmech: co prodz do: ξ [, ] [,] [, ] ξ [,] ( ξ ( dξ ( ( ξ, (8. (9 Po przęcu położeń ęzłó rtośc g zcz sę t sposó, drtur dł ścsłe dl edomó możle ższego stop. Poeż operc t est dość żmud mus ć o z dużą dołdoścą, prtcze est orzstć z rtośc tlco-
3 ch. Tlce te moż zleźć żdm podręczu dotczącm metod umerczch. Tut prztoczm spółcz rch drtur z [ ]. Tlc. Kdrtur Guss rzędu do 9 ( ξ ξ (,,,779,,7799,,, ,8,998,788,9,97989,89,,988,7887, Wzczee rtośc g położeń ęzłó est róeż możle prost z ruu ścsłego cło edomó możle ższego stop. Wrue te pozl zpsć tle róń eloch (, le est edomch (g położeń ęzłó. Nestet te sposó postępo, pommo, że prostsz ocepce est też rdze żmud umercze, gdż prodz do ułdu eloch róń lgerczch, tór mus ć roząz z dużą dołdoścą, poeż dołdość t decdue o ośc uzsch ó cło. ( [ ] d. ( I t przłd rozpsuąc stosoe zleżośc dl tróputoe drtur Guss, tór prodz do zoró umerczego cło ścsłch dl elomó do stop pątego łącze otrzmuem stępuąc ułd sześcu eloch róń lgerczch: d d d d d d. ( Ze zoró ( ądź ( moż tomst tchmst osoć, że przedzle [ ], ęzł g są rozmeszczoe smetrcze zględem putu, co prost zostło orzste prz ostruou Tlc. J.Szmelter Metod omputeroe mechce, PWN 98
4 Możlośc podosze dołdośc drtur ążą sę oczśce z: zęszem lcz ęzłó przedzle cło (podoszee stop elomu terpoluącego; stotm ogrczeem est tu stępoe efetu Rugego (ptrz Iterpolc, pooduące, że do prtczego stoso dą sę łącze drtur zględe sego (e że ż czrt do sódmego stop; orzstem ddtośc cł, podzeleem przedzłu cło ele częśc stosoe żde z ch drtur sego rzędu (t ze drtur złożoe. Dl prtczego prześledze sposou postępo prz umerczm olczu cłe zczm rtość rże: l ( d ( l(. 77, ( orzstąc z różch drtur. I t oleo orzstąc ze zoró (-( otrzmuem odpoedo dl drtur tpu Neto: ( l(, l(, ( l(, l(, l(, ( l(, l(, l(, l(, l(,,,79 l( d, (,79 8,9 dl drtur tpu Guss po doou trsformc (8 położech ęzłó dch T-, : lc celu sprodze ch do przedzłu [ ] otrzmuem osttecze: ( ( ( ( : { ( : : : ( ( ( ( ( ( ( ( (,,77,77,779,,779,8,998,998,8,,97,,8,,89,89,998,997,797 ( ( ( ( ( l( l( ( ( ( ( ( ( ( l( l( l( ( ( ( ( ( ( ( ( ( l( l( l( l( l(, (,7887,7 l(.(,8 ( (. Zestm t olczoe rtośc cł tlc celu poró dołdośc uzsch ó. W olech olumch Tlc przedstoo lczę ęzłó drtur, cło drturą tpu Neto Guss orz łąd zględ proceto tch ó olczo stosuu do rtośc ltcze cł.
5 Tlc. W cło umerczego Kdrtur Błąd Neto Guss Neto Guss,,7887,% 8,%,79,7 8,98%,9%,79,8,7%,%,9,,77%,% J dć żdm przpdu prz porólm łdze prc (lcz olczeń rtośc fuc podcłoe zstosoe drtur Guss prodz do zcząco (od do pod rz dołdeszch ó. Rozżm eszcze estę drtur złożoch. J uż zostło to zzczoe poże, ch ostruc orzstuem ddtość cł, tór ozcz, że cłę po pem przedzle możem zstąpć sumą cłe po przedzłch tórch sum de przedzł śco, czl: gdze oczśce m p f f f d p ( f, ( < p <... < p <... < p m <. p W przpdu drtur tpu Neto prz stłe długośc przedzłu cło [ ] p, p róe h dl ( (7, h dl (8 h dl (9 ( h ozcz tu odległość pomędz ęzłm drtur postępoe poższe prodz do zoró: terpolc elomo stop, czl fucą stłą: h ( h terpolc elomo stop, czl fucą loą: h m m d ( ( h ( terpolc elomo stop, czl fucą drtoą: h m ( ( h ( h (,,... p m m,,..., ( terpolc elomo stop, czl fucą trzecego stop: h 8 m, (7 d ( ( h ( h ( h (,,... m,,... m,,..., (8, (9 Postępoe to przpdu drtur tpu Guss est róozcze z zstosoem proste drtur odpoedego rzędu do żdego podprzedzłu z oso zsumoem t uzsch ó. Dl zoreto sę, est pł gęstośc podzłu przedzłu cło dołdość u flego rozążem zde ( t doerąc lczę podprzedzłó cło o edoe długośc żde z metod, fl uzsć z łędem zględm procetom e przerczącm,%. W tch olczeń przedstoo Tlc.
6 Tlc. Poróe efetośc metod cło Neto Guss h le cł łąd h le cł łąd, 8,,%,,,%,88 87,,%,,,%,,98,%,,,%,,,%,,,% W olech olumch tlc, dl odu metod cło, przedstoo długość poedczego przedzłu cło (h, cłotą lczę putó, tórch leżło olczć rtość fuc podcłoe (le, olczoą rtość cł (cł orz łąd zględ proceto uzsego u stosuu do rtośc ścsłe (łąd. Poeż zsdczm czem płącm czs cło est lcz olczeń rtośc fuc podcłoe, zgode z oczeem ozło sę, że rdze efet z rozżch poże est czteroputo drtur Guss. Prolemem z tórm spotm sę dość często prz umerczm cłou est prolem grc ełścch (czl lu. Możem soe z m pordzć d sposo: przez odpoedą zmę zmech (tpu t : f f dt ; ( t t zstosoe drtur speclch: α ( e α e f ( f β f f ( f ( f (, ( drtur te oszą odpoedo z Guss Lguerre, Guss Hermt Guss Jcoego. Stosuąc drtur te leż pmętć o tm, że ch spółcz (położe ęzłó g są oreśloe mogą ć uże ede óczs gd przedzł cło fuc podcło mą postć dołde tą e zorch (. W przpdu osolośc cłole (p. tpu ( pośm per przez odpoedą zmę zmech pozć sę osolośc dopero ted zstosoć tórąś z stdrdoch drtur. ( Stosoe zor przedstoo poże:, <. ( t ( f t f ( t dt. (
7 Rozptrzm te postępoe rdzo prostm przłdze: t d t dt d cos( t cos dt. ( W przpdu cło oszrze dumrom orzstm z terdze, że cłoe tm oszrze po poerzch czoroąt D może ć zstąpoe cłoem po poerzch oszru zorcoego (drt. Wruem poprośc tego postępo est sostruoe odzoro, tórm oszr D est przedsto o orz oszru. Stosoe odzoroe moż zudoć posługuąc sę elomm terpolcm Lgrge dóch mrch (ptrz rozdzł dotcząc terpolc, zor (8 stępe, tórch elemetem zorcom est oszr, zor trsformce u( η v( η mą postć (9. Wóczs, eżel tlo speło est zleżość: dl żdego putu oszru, to prdz est zór: D u( η u( η ξ η J, ( v( η v( η ξ η ( u( η, v( η f (, d f J dξdη, ( ted cłę dóch mrch moż olczć o złożee dóch cłe edm mrze, co osttecze prodz do zleżośc: D f N N ( d ( ( ξ, η, ( ξ, η,, (7 gdze: ξ η,, (8 ξ η ( ξ η f N( η, N( η (ptrz zor (9 rozdzle dotczącm terpolc. Wrto zużć, że ze zoró (7 możlość cło eruch ξ η prz użcu drtur różego rzędu (z różą dołdoścą. Postępoe te może ć uzsdoe przpdu roząz zdń, tórch zmee podstoe mą róż chrter (p. przestrzeń czs. Podą procedurę moż łto uogólć przpd cło oszrze tró ęce mrom. 7
Metody numeryczne procedury
Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc
Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.
chł Pzdos Istytut Techolog Iforcyych Iżyer ądoe Wydzł Iżyer ądoe Poltech Kros Aprosyc Aprosycą zyy procedurę zstępo ede fuc (fuc prosyo) ą fucą (fuc prosyuąc) t sposób, by fuce te eele sę różły sese oreśloe
są dyspersjami wartości mierzonych parametrów A
Dopsoe ucj oej eou Dopsoe ucj oej eou Dopsoe ucj oej Ze Y jest oą ucją X Y A A X W poró Y ją rozłd or o dspersj Y tór ogó przpdu róeż zeż od X. Wrtośc X e są orczoe łęd u jgorsz pdu oż je poąć poróu z
Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n
lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Nadokreślony Układ Równań
Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
Przypomnijmy tu znany wzór Taylora ze względu na jego wykorzystanie w zagadnieniach interpolacji, róŝniczkowania i całkowania numerycznego.
3. Wzór Tlor. Przpomm tu z wzór Tlor ze względu ego worzste w zgdec terpolc róŝczow cłow umerczego. Jeśl uc e perwszc pocodc est cągłc w przedzle domętm [] to dl dowolc putów z przedzłu [] zcodz!! ξ gdze
SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA
POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne
r: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe wyłd r różczowe przylżoe cłowe umerycze r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc Perwsz pocod uc dec: ' lm Ozcze:
VIII. RÓŻNICZKOWANIE NUMERYCZNE
VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +
11. Aproksymacja metodą najmniejszych kwadratów
. Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
SZTUCZNA INTELIGENCJA
SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
Transformacje stabilizujące wariancję
ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl Trsformce stblzuące rcę Przypuśćmy, że mmy ezleżych zmeych losoych,..., z rozłdó N(, σ ),...,, przy czym złdmy, że σ f(m ) f est zą fucą. W prtyce możemy zć tę
UWAGI O METODZIE BOSTON CONSULTING GROUP (BCG) 1. Wstęp
D N I O P E R Y J N E I D E Y Z J E Nr 4 J MIKUŚ * Er IELENINIK** UWI O MEODZIE OON ONULIN ROUP W rule zpropooo sposó zcz esoró spółrzęch śroó ół ch proe eoze uzglęąc łę poroe os zglęego uzłu e eos sregcze
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku?
METODY NUMERYCZNE Wkłd. dr h.ż. Ktrz Zkrzewsk, prof.agh Met.Numer. wkłd Pl Aproksmc Iterpolc welomow Przkłd Met.Numer. wkłd Aproksmc Metod umercze zmuą sę rozwązwem zdń mtemtczch z pomocą dzłń rtmetczch.
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej
Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe
Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak
Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest
Całkowanie numeryczne funkcji. Kwadratury Gaussa.
Cłkon nuryczn unkc. Kdrtury Guss. Rozżyy:. -D -punkto kdrtur Guss tod prostokątó. -D tod trpzó. -D -punkto kdrtur Guss 4. Zn grnc cłkon unoron d t dt 5. -D n-punkto kdrtur Guss 6. -D -punkto kdrtur Guss
Wykład 6. Stabilność układów dynamicznych
Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
Różniczkowanie numeryczne
cł zows Isttut Tecolog Iormcc w Iżer ąowe Wzł Iżer ąowe oltec Krows Różczowe umercze Różczowem umerczm zwm wzcze przblżoc wrtośc pococ uc srete ee lub welu zmec w zc putc obszru. Opercę tą moż woć wuetpowo:
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Metody numeryczne w przykładach
Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe
Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.
Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.
chł zdows Istytut echolog Iforcyych w Iżyer ądowe Wydzł Iżyer ądowe oltech Krows Iterpolc Iterpolc oże być trtow o szczególy przypde prosyc polegący ty że fuc prosyow fuc prosyuąc przyuą te se wrtośc w
Rozszerzenie znaczenia symbolu całki Riemanna
Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Projekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Metody obliczeniowe. wykład nr 4. róŝniczkowanie przybliŝone całkowanie numeryczne
Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Metody olczeowe wykłd r 4 róŝczkowe przylŝoe cłkowe umerycze Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Perwsz pochod ukc Ozcze: - ukc określo
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
BADANIE DRGAŃ RELAKSACYJNYCH
BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor
Ś Ż ż Ż
Ś Ż ż Ż ż ć ć ć ć ć ć ż ż Ż ż Ż ż ż ć ż ż Ż Ż ż Ż ż Ż ż Ż Ż ż Ż ż ć ć ć ż ć ż ż ż ć Ż ć ć Ś ć Ż ć ż ź ż ż ż ć ż ż ż ż ć Ś ż Ż ż Ć Ć ć Ż ź ć ć ć ć ż ź ć ć Ść ć ż ź Ść ć ź Ś ć ć ć Ś ć ć ć ć ć ź ż ż ć ć
instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego
5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell
Ń Ó ć Ó Ó Ó ć Ż Ś Ą ź ź ć Ą ć Ź ć ć ź ć ć źćź ć ź Ż ć ć Ź ć Ą Ą ć ź Ą ź Ą ź Ż ć ć ć ć ć ć ć ć ć Ż Ź ć ć Ź ć Ą ć Ż ć Ś Ą ć Ąć ć ź ć ć ć Ą ź ć ź ć Ł Ą Ż ź ź ź ć ć ć ź ć Ś ć ć Ś Ł Ż Ą ć Ż ć Ż ź Ą ć ć Ż ć
POMIAR SIŁY ELEKTROMOTORYCZNEJ OGNIWA I CHARAKTERYSTYKI JEGO PRACY
ĆWICZENIE 5 POMIA SIŁY ELEKTOMOTOYCZNEJ OGNIWA I CHAAKTEYSTYKI JEGO PACY Elektrczość Mgetzm. Ops teoretcz do ćcze zmeszczo jest stroe.tc.t.ed.pl dzle DYDAKTYKA FIZYKA ĆWICZENIA LABOATOYJNE.. Ops kłd pomroego
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym
Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni
Środek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
Ł ś Ń Ż Ó Ń Ż Ń Ł Ł
Ł Ł Ł Ń Ń Ó Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ó Ś Ś ś ść ś ć ć ć ś ś ś ś ś Ń ś ś ś ś ś ć ć źć ś ć ś ć ś ść ś ś ś Ł ś ś Ł ć Ł ś ć ć ć ś ś ćł ź ść ść ć ść ś ś ć Ż ś ś ś ć ś ć ć źć ź Ń ś ś Ł Ń ć ś ść Ł źć ś ś ć ćń ć
Przy zakupie kompletu opon Goodyear UltraGrip 8 ciepły koc w prezencie. Gratis! ** www.premio.pl. Nowość! UltraGrip 8 155/70 R13 75T 209 zł*
Gt! ** **c c gc, ść! UltG 8 209 ł*.m.l P mlt Gd UltG 8 cł c c Zm mc Dl śc Zmę Gd UltG 8 SP t St 4D 195/65 R15 91T SP t St 4D. dchd m mch. lc tó mtch cą c gd. tc fl tchę d d g t mch gdżtó Dl. 319,-* 209,-*
METODY KOMPUTEROWE 11
METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown
ż ń ź ń Ł ń Ż ż ż ż ż Ż ń ń ń ń ć
Ó ź ż ń ć Ą ż ń ź ń Ł ń Ż ż ż ż ż Ż ń ń ń ń ć Ó ń Ź ć Ą ć ń ń ż ń ż Ż ż ń ż ń ń ń ń Ź Ż ń Ż ż ń Ż ć ć ż Ś ń Ż ż ń ż Ę ż ń ń ć Ę ż ć ż ć ż ć ż ż ć Ź ć Ż Ó ż ń ń ź Ł ń ć Ó ż Ż ń ń ż ń ż ć ż ń Ź ń ń ń ń ż
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1
METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss
Algorytmy metod numerycznych. Monika Chruścicka
Algoryty etod ueryczych Mok Chruścck Ktolck Uwersytet Luelsk J Pwł II Wydzł Nuk Społeczych, Istytut Ekoo Streszczee Artykuł zwer chrkterystykę etod ueryczych orz podstwowych lgorytów etod ueryczych. Przedstwoe
ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń
Ź Ź Ó Ń Ó ź ć Ź ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź ć Ź Ę Ę ć ć ź Ę Ę Ź ć Ó Ó Ś Ó Ń ŚĆ Ę Ś Ó ćć Ó Ś Ę Ś Ę Ę Ś Ś ć Ę Ó Ę Ó Ę Ń Ć Ś Ś Ś Ś Ó ŚĆ Ó ć Ń Ń Ó Ę Ó Ó Ó Ś Ę Ć Ó ć ć Ó ź Ę ć ć Ź ć ć ć ć ć ź ć Ź ć Ć ć ć Ś
r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów
Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:
CONNECT, STARTUP, PROMOTE YOUR IDEA
Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
5.4.1. Ruch unoszenia, względny i bezwzględny
5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Układ Liniowych Równań Algebraicznych
chł Pzowsk Isttut echoog Iformcch w Iżer ąowe Wzł Iżer ąowe Potechk Krkowsk Ukł owch Rówń gebrczch Z owm ukłem rówń gebrczch mm o cze w stuc, g wszstke zmee wstępuące w rówch ukłu wstępuą ee w perwsze
dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )
Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Rachunek różniczkowy funkcji wielu zmiennych
Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
7. SFORMUŁOWANIE IZOPARAMETRYCZNE
7. SFORMUŁOWAIE IZOPARAMETRYCZE 7. SFORMUŁOWAIE IZOPARAMETRYCZE W poprzedch rozdzłch omówlśm elemet skończoe formłowe z pomocą tzw. współrzędch ogóloch. Zkłdlśm że przemeszcze elemet zmeą sę zgode z przętm
Metody obliczeniowe. Semestr II
Metody olczeowe Semestr II Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch. Rozwązywe ułdów rówń lowych. Metody ezpośrede tercye.. Sposoy rozwązyw rówń elowych, zgdee optymlzc.. Aprosymc
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Rachunek różniczkowy funkcji wielu zmiennych
EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam
Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej
Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +
REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa
Egzm dl Akturuszy z 5 mrc 0 r. Mtmtyk Fsow Zd Krok : Ay koc roku yło co jmj ml K mus spłć rówość: 000000 50 000 K 50 000 000000 K Krok : Lczymy st kot koc roku zkłdjąc, Ŝ koc roku mmy ml 000000 50 5000
Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH
METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -
ć ż Ą ź ź ź Ź ć ć ź ż Ł ć Ź ź Ł ć ż ż Ć Ł ż ć ć ź ż Ł ć Ź Ć Ć Ł ż
ż Ź ż Ł ż Ś ż ć ż ć Ł Ś ż ż ż ż ź ż Ź ż ż Ż ć ć ż Ź ż ć ż ć ć ż ć ż Ą ź ź ź Ź ć ć ź ż Ł ć Ź ź Ł ć ż ż Ć Ł ż ć ć ź ż Ł ć Ź Ć Ć Ł ż ż Ź ż ź ż Ź ź Ź ćź ż Ś Ł ć ż ż ć ż ż ć ż ż ć ż ć ż ż Ł ż ź Ł ż Ł ż ć ż