Zastosowania matematyki w chemii. Marek Kręglewski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowania matematyki w chemii. Marek Kręglewski"

Transkrypt

1 Zsosow mem w em Mre Kręglews

2 Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze. 6. Rozwęe uj w szereg. 7. Crers łędu meod umerzej w zleżoś od długoś rou. 8. Esrpolj Rrdso. 9. Numerze rozwązwe rówń różzow..welom: posć url, sem Horer..Ierpolj welomem.

3 Progrm zjęć.deje rodzje merz. Dzł merz..zps merzow ułdu rówń low..rozwąze ułdu rówń low w pos merzowej. 5.Wroś rersze merz. 6.Eleme eor łędu przeoszee sę łędów. 7.Opmlzj low. 8.Opmlzj elow. LABORATORIUM. Progrm MS Eel. Worzse MS Eel do rozwązw prolemów umerz LITERATURA:. E. Seer, Mem dl emów, WN PWN.. A. Rlso, Wsęp do lz umerzej, PWN 975.

4 Algorm rozwąz rów =() START Wzj, ε, A = = =½(+A/) NIE - < ε TAK Wpsz STOP Śld dzłń

5 Proes zeż: =½(+/) L P 6

6 Proes rozeż: =6-* E E E E E E+7 -.7E L P

7 Meod sej Rozwąze rów ()=, zl szue mejs zerow uj (). Szum mejs zerowego w przedzle <,>, w órm: ) uj () jes ągł ) () zme z w przedzle <,>, z. ()()< mejse zerowe p p p p

8 Algorm meod sej START Wzj,, ε ()*()< TAK p=(+)/ ()*(p)< TAK =p NIE NIE Wpsz: zł przedzł =p Śld dzłń NIE - <ε TAK Wpsz, STOP

9 Meod Newo Rozwąze rów ()=, zl szue mejs zerow uj (). Szum mejs zerowego rozpozją w dowolm pue, jeżel: ) uj () orz jej perwsz pood są ągłe ) perwsz pood jes róż od zer mejse zerowe sz Rozwęe uj w szereg Tlor:!

10 Algorm meod Newo START Wzj p, ε p =p p =p - (p ) / (p ) NIE p -p < ε TAK Wpsz p STOP Śld dzłń

11 Meod sez Rozwąze rów ()=, zl szue mejs zerow uj (). Szum mejs zerowego rozpozją z pr puów (, ) jeżel: ) uj () jes ągł ) ( ) ( ), gd mejse zerowe Perwsz pood przlżo przez lorz różow:

12 Algorm meod sez START Wzj p, p, ε q =(p ) q =(p ) p =p ; p =p q =q ; q =(p ) p =p q (p -p ) /(q -q ) p -p < ε NIE TAK Wpsz p STOP Śld dzłń

13 Cłowe umerze T T d m m m T T T m * * T T T m m m *, m m T T T T Meod rpezów T m

14 Cłowe umerze S d m S S S m m m m *, / m m m m S S S S / Meod Smpso S m/ m przse

15 I Cłowe lze - przłd ( ) d ()= d 68 ()= d ,

16 Cłowe umerze - przłd I ( ) d () T ( ) T ( ) S( ) 78 *78 78 * W olzeń umerz T(=) T(=) S(=) ,67 I (dołd) , ()= ()= T( ) T( ) S( ) 76 * * Błęd meod rpezów łąd T() T()-I T() T()-I ,6 9,6

17 Różzowe umerze ) ( ) ( lm ) ( ) ( lm Przlże jedosroe: L P ) ( ) ( ) ( ) ( - + (+) () (-) Śred P L (róż erl): L P ) ( ) (

18 Różzowe łąd meod!!!!!!! /:!!! pood łąd! : /!! pood łąd Pood jedosro Pood erl _

19 Przłd olzee poodej Olz poodą l() w pue = meodą poodej erlej orz jedosroej dl róż długoś roów: ()=l() l()=/ l()=.986 ()=[(+)-(-)]/(*) () () łąd ^ łąd/^ ()=[(+)-()]/ + (+) () łąd łąd/ Zmejszee rou zmejsz łąd, prz zm szej łąd mleje w meodze róż erl

20 Rówe różzowe I rzędu Rówe różzowe opsująe rozpd promeowórz Propozj rozwąz: Sprwdze poprwoś: Podswee do rów: Lew sro rów prwej, gd: dn d N N dn d e N e e e e Wrość wzz z wruu poząowego: Oseze rozwąze lze: sł szoś rozpdu promeowórzego N e N N N N N e

21 Rozpd promeowórz Rówe różzowe opsująe rozpd promeowórz dn d N Rozwąze lze: Ores połowzego rozpdu : N N N e e N e l N l N l

22 Rówe różzowe meod Euler Rówe ( jes zą ują): Wzór przlżo poodą: Po przeszłeu: Uproszzo zps: d d d d, d, d d d Os wzór pozwl olze wroś uj pu po pue. Wrość uj w pue zerowm oreślją wru poząowe.

23 Rówe różzowe I rzędu dn N d N dn/d Nl N Nl.5.5

24 Rówe różzowe II rzędu Drg rmoze F p = m - przspeszee F w = - - wlee Przjmjm: m= = Rówowg sł F p = F w =- " d d Rozwąz szzególe rów: e e e e e e e Rozwąze ogóle rów: e e F Słe wzze z wruów poząow

25 Rówe różzowe II rzędu e e - Wru poząowe: e e e e Rozwąze ogóle z uwzględeem wruów poząow: e e os

26 Rozwąze umerze I d d v d d d dv gdze : Korzsm z przlżo wzorów poode: v v v v v v v v Ozzm: v v v Z pos rów w:

27 Rozwąze umerze I.d. Gd = : m v m s () () v() () pood jedosro v () v() ()

28 Rozwąze umerze II d d v d d d dv gdze : Korzsm z przlżo wzorów poode erle: v v v v v v v v Ozzm: v v v Z pos rów w:

29 Rozwąze umerze II.d. Gd = : m v m v v s () () v(+/) () pood erl v () v(+/) ()

30 Esrpolj Rrdso Cz woują olze ze sońzo długośą rou moż oszowć w grz dl? F p r O r p F() wrość olzo dl długoś rou = F() poez wrość dl zerowej długoś rou p rząd łędu meod umerzej Olzm w umerz F dl dwó róż roów (q) F F F F p r O p q q O r q p p p q q /* q p

31 Esrpolj Rrdso.d. r O q q F F F p eż jes orzoe łędem posępowe moż prowdzć dlej. Njzęśej esrpolję sosujem dl q=, wed: r O F F F p p p p p p p p p q q F F q q q F q q F q odejmujem srom

32 Esrpolj Rrdso przłd I d 68 W umerze meodą rpezów: T() T T T

33 Esrpolj Rrdso przłd ()=l() l()=/ ()=[(+)-(-)]/(*) P() / łąd meod róż erl, zl p=. = P()-P()

34 Szereg geomerz /* S S S S S S r r w szzególoś dl = ) wrość sum jes rów ) jes rozwęem w szereg uj

35 Szereg Mlur ) (,,, słe 6 ) "( ) ( d d d d Sąd ()! "()! ()!!!! ()! "() ()

36 Szereg Tlor ) (,,, słe 6 ) "( ) ( d d d d Sąd ) (! ) "(! ) (!!!! ) (! ) "( ) (

37 Rozwęe uj w szereg e, Olz wrość (6) poprzez rozwęe w szereg Mlur e " e e * Wwołj szereg Mlur

38 Dołdość olzeń Źródł łędów: łęd d wejśow łęd zorągleń łęd oę uproszze modelu łęd przpdowe Błęd ezwzględe względe: wrość przlżo wrość dołd łąd ezwzględ łąd względ r

39 Zorągle oe zorąglee oęe,97,,9 -,97 -, -,9 zorąglee do r po przeu lz orzo łędem ½ - Przłd powżej:, ½ - =,,5 J zorąglć lz zońzoe rą 5?,5,,5, reduj łędów prz dodwu

40 Przeoszee sę łędów Dodwe odejmowe,5,75,7,,,, m,8,,,, m,,,, J jes łąd sum? J jes łąd róż?,5,9,86,,,, m,96,,,, m

41 Przeoszee sę łędów Dodwe odejmowe Podoe: Błąd ezwzględ sum lu róż rów sę sume łędów ezwzględ słdów.

42 Zoszee sę słdów prz odejmowu %,,,,,,576,576,576,576 r łąd ezwzględ łąd względ

43 Przeoszee sę łędów Możee dzelee r r r r r r r r r r r r r r Podoe: r r r r Błąd względ lozu lu lorzu rów sę sume łędów względ zów.

44 Worzse zsd przeosze łędów Olz perws rów wdrowego woują olze z dołdośą do 5 r zzą ,98 8 7,98,8 lo r zząe 8 7,98 55,98 5 r zzą r,5,8 r,5 55,98 9 6

45 Worzse zsd przeosze łędów Worzse wzorów Vee ,98,5,786,5,786 55,98 55,98 7,98 8 7, r r

46 Błęd msmle złożo wrżeń r,,,,,, D zleżość uj Prmer orzoe łędm. J jes łąd msml weloś złożoej?

47 Przłd szow łędu msmlego 6%,6,,, r,,,

48 Błęd sdrdowe złożo wrżeń,,,,,,,,, s s s s s s s s s D zleżość uj s o łęd sdrdowe zme. J jes łąd sdrdow weloś złożoej?

49 Przłd szow łędu sdrdowego,, s s s s s s s,,, s s s

50 Ierpolj welomem D jes uj () w pos l, z. zm jej wroś w (+) pu (węzł) ( ), ( ), ( ),, ( ). Zde: zleźć welom -ego sop, że: w( )= ( ) w( )= ( ) w( )= ( ) w () zwm welomem erpoljm. Cele erpolj: łwe zpmęe pos uj (współz) wowe operj memz welome wzze pośred wroś uj

51 Olze wroś welomu Posć url welomu w Olze wroś welomu wg semu Horer w

52 Olze wroś welomu Algorm START Wzj, { }, w= =- w=w*+ =- TAK NIE Wpsz w STOP

53 Śld dzłń w ()=+- + = = = =- = Olz wrość welomu w pue =. w *-= *+= *+= - Wrość welomu w pue = wos.

54 Posć Newo welomu Ne,,,, - są dm lzm, dl ór wroś welomu są oreśloe (de). Tworzm welom pomoze p (=,,,,) e, że p () = p () = - p () = (- )(- ) p ()= (- )(- ) (- - ) Welom w () przedswm jo w p J wzzć współz?

55 Wzze współzów () [ l, l+ ] [ l, l+, l+ ] ( ) ( ) ( ) ( ),,,,,,,,,,,,,,

56 Przłd w p p p p () [,] [,..,] [,,] = = 8 = 58 =

57 Ierpolj low Pros: w ()= + ( ) = = + (/ ) ( ) = = + (/ ) Wzz, - = =( - )/( - ) - = =( )/( - ) w ()= [( )/( - )] + [( - )/( - )] w ()= [( + )/( - )] + [( - )/( - )] w ()= + [( - )/( - )] (- ) o posć Newo dl w () = p () + p (), gdze p () = = p () = - = ( - )/( - )

58 Zjwso Rugego Prz erpolj welomem wsoego sop, p. -ego dl uj w przedzle [-,] dl węzłów rówoodległ ( ) 5 = - + *, =,,,, () w() E E

59 Zjwso Rugego Porówe wresu uj welomu:

60 Rozwązwe ułdu rówń A A A A A Przłd: + + = + + = + + = 8 A A 8 A =- = =

61 Merze przeszłe geomerze wersj P ode w płszzźe P oró os s s os P φ Merze rsormj geomerz są merzm orogolm Q Q Q Q Q T Q Q Q Q Q T os s s os os s s os os s s os Q Q Q Q Q T

62 Przeszłee merz przez podoeńswo Iseje odwzorowe A, óre przeszł : A Jeżel weor przeszłe są do weorów poprzez rsormję Q, j wgląd odwzorowe weor w weor? Q Jeżel orz, o Q A AQ Q Jeżel merz Q jes eosolw, o Q Q Q Q AQ AQ B Merze A B są swom rsormm przeszłom przez podoeńswo B Q AQ

63 Przeszłee - przłd os s s os Q φ=-5

64 Przeszłee - przłd (, )=(,) (, )=(,-) += -=- -5 (, )= (, )=,,

65 Rówe rersze merz λ slr, A() I() K() K = A λi merz rersz merz A dek = K(λ) = de(a - λi)=a - λi= rówe rersze merz K(λ) = λ + - λ λ λ + = Perws welomu K(λ): λ, λ,, λ -, λ zwm perwsm rerszm (wrośm włsm) merz A. Jeżel B = Q - AQ, o merz rersz merz B K = B λi = Q - AQ - Q - IQ = Q - (A - I)Q, wzz dek =B - λi= Q - A - λi Q = A - λi= Dwe merze zwąze przeszłeem przez podoeńswo mją e sme perws rersze.

66 Perws rersze, de, de I I A B A B

67 Merz dgol d d d d d d d d d d d d d d d d,,,, I D I D D Jeżel seje e przeszłee przez podoeńswo, óre merz A sprowdz do merz dgolej D, o eleme przeąej merz dgolej są zrzem perwsm rerszm (wrośm włsm) merz A.

68 Przłd dgolzj merz s os s os s os s os s os s os s os s os s os s os s os s os s os s os s os s os os s s os os s s os os s s os os s s os AQ Q A Q A wzerowć eleme edgole: 8 os s s os Po przeszłeu orzmujem merz:, s os s os

69 Perws weor rersze C - AC jes przeszłeem dgolzująm merz A. Kolum merz C są weorm rerszm. Jeżel merz C jes orogol, o C - =C T, C - AC = C T AC. os C s 8 s 8 os 8 8 os s 8 8 s os 8 8 Ousroe pomożee merz A przez weor rersz dje wrość rerszą: os 8 os s os s 8 os s os os os s s os s os s 8 Ogóle: 8 8 T A ,,, 8 s s 8 8

70 Regresj low 5 5 (, ) 5 (, ) 6 8 Regresj low: =*+ Zde: Wzzć opmle wroś orz. 7

71 Regresj low Podswowe złoże: ) Rozłd woół l prosej jes losow ) Wrj σ jes ezleż od Meod jmejsz wdrów:, Wzzm m Φ(,) względem orz :,, 7

72 7 Regresj low Rozwąze ułdu rówń ze względu, :

73 Regresj low Esm wrj dl wroś : s Esm wrj dl prmerów orz : s s s s Współz orelj lowej dl pró r r ov vr, S vr S S Wrość r zwer sę mędz - +. r> wszuje zleżość dodą, r< zleżość ujemą mędz orz. r= wszuje r zleżoś lowej mędz orz. 7

74 Regresj low - przłd

75 [m] [g] * * -*- (-*-)^ -sr -sr Sum: = -.6 g/m = g s^=.5 s=.7 g s^=. s=.55 s^=. s=.66 sr= 5 ov(,)= -6.8 sr= - vr()= 8. vr()= 69.6 r(,)=

76 Węej o orelj - wdr IV III I II μ Kwdr: μ I -μ < -μ < (-μ )(-μ )> II -μ > -μ < (-μ )(-μ )< III -μ > -μ > (-μ )(-μ )> IV -μ < -μ > (-μ )(-μ )< ov(, ) ov, 76

77 r Współz orelj lowej ov vr, S vr S S r=- -<r< r= <r< r= 77

78 Regresj low jo ułd rówń Newdome:, Szum rozwąz ego, uzsć m Zps merzow: J

79 Ułd rówń dmrow J J ε ε ε J T T Poszuujem rozwąz, dl órego T jes mmle. J J J J J J J J J ε ε J J J J J J J J J J J T T T T T T T T T T T T T T T T T T T T T T T olzoe wroś prmerów zpewją mmlzję sum wdrów odleń od prosej

80 Przłd przedswe merzowego 9,5 5, * de J J J J J J J J T T T T

81 Wrj dl zmeej 8 J Wrje s, 5,,9 9,5,,7 ε T ε,,9,,7 ε s,,9,,7, 9 Wrje owrj dl prmerów 5,8 s ov(, ) ov(, ) s s, J T J,9* Współz orelj lowej r ov(, ) 58,6*8,, 9 s s

82 Jo W regresj lowej uj modelu o pros = * +. Jo o merz pood po prmer, we wszs pu d =,,, J Jeżel do d elśm dopsowć welom -go sop = + * + *, o jo mł posć: J

83 Rozłd złożoego psm Psmo dośwdzle Nleż dopsowć do psm rzwe Guss w pos P e - wsoość - położee - szeroość 8

84 Meod jmejsz wdrów { }, =:M, M dopsow prmerów Fuj łędu (sum po pu): Φ{ } = j [ j (dośw) - j ({ }] Zde Mmlzowć Φ modują zór { } srują z wroś poząow { } 8

85 Fuj łędu jo 85 e P e P e P N P P e P Rozłd N psm Eleme jou

86 Algorm 86 P P P P P P P P J Y Poprwo wrość { } J T Y J T J

87 Meod jmejsz wdrów Kro Psmo rozłożoe słdowe

Zastosowania matematyki w chemii. Marek Kręglewski

Zastosowania matematyki w chemii. Marek Kręglewski Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.

Bardziej szczegółowo

Zastosowania matematyki chemia aplikacyjna. Marek Kręglewski

Zastosowania matematyki chemia aplikacyjna. Marek Kręglewski Zsosow memk em plkj Mrek Kręglewsk Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =(). 3. Rozwązwe rówń jedej zmeej: meod bsekj, Newo sez. 4. Cłkowe umerze: meod rpezów Smpso.

Bardziej szczegółowo

kwartalna sprzeda elazek

kwartalna sprzeda elazek Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch 996-999 wosł: 4 5 6 7 8 9 4 45 5 57 6 64 68 65 68 67 69 7 7 7 75 Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec

Bardziej szczegółowo

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest

Bardziej szczegółowo

Metody numeryczne procedury

Metody numeryczne procedury Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej

Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz

Bardziej szczegółowo

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:

Bardziej szczegółowo

Ocena wpływu niepewności estymacji parametrów modeli czujników pomiarowych na wartości maksymalnych błędów dynamicznych

Ocena wpływu niepewności estymacji parametrów modeli czujników pomiarowych na wartości maksymalnych błędów dynamicznych Polech rows Wydzł Iżyer Elerycze operowe edr oy ech Iforcyych Oce wpływ epewośc esyc prerów odel czów porowych wrośc sylych łędów dyczych Dr ż. rzyszof oczy rów 5.3.5 Pl wysąpe. Błędy w porch welośc słych

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów

Bardziej szczegółowo

Rozszerzenie znaczenia symbolu całki Riemanna

Rozszerzenie znaczenia symbolu całki Riemanna Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie

Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie odswy pryczych decyzji eooiczo- fisowych w przedsiębiorswie l wyłdu - Wrość pieiądz w czsie 4 h - Efeywość projeów w iwesycyjych 3-4 h -Wżoy osz piłu u WACC h odswy pryczych decyzji eooiczo- fisowych w

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec

Bardziej szczegółowo

ć Ą ą ą Ż Ż ó ą ż Ć ą ĆŻ Ż Ó Ó Ó ą Ó ń ą ę ą ę Ź ń ą Ó ą ą ą ą ą ą Ó Ż ęż ę ą ę ą ą ż ĘĆ ż ę Żą ż ą ń Ó ą Ó ą ę ż ęż ó ó ć ż ń ęż ń ń ć ń ż ć ć ą ą Ó Ó ó ó ń ó ę ó Ó ą ż Ć ę Ó ę ż Ó ó ą ó Ó ż Ć ę ó Ó ó

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł

Bardziej szczegółowo

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3

Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3 To sprwdzi ośości ści ociążoyc pioowo wg eody uproszczoej zgodie z P- 996- UWAGA: ośość ści eży sprwdzć żdej odygcji, cy że gruość ści i wyrzyłość uru ścisie są ie se wszysic odygcjc..... 5. De: rodzje

Bardziej szczegółowo

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe. Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

(liniowy model popytu), a > 0; b < 0

(liniowy model popytu), a > 0; b < 0 MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ

Bardziej szczegółowo

MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.

MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,. CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych z Miernictwa Elektronicznego

Sprawozdanie z zajęć laboratoryjnych z Miernictwa Elektronicznego Sprwozde z zjęć lortoryjyh z Mertw Elektrozego Dt wyko pomru: 08.05.008 rowdząy: dr ż. J Juszkewz Sprwozde wykoł: Tomsz Wtk Sttystyz oe wyków pomrów rzyrząd pomrowy: Suwmrk z wyśwetlzem elektrozym; L =0,0mm

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj 8 8 8 - - - - 3 8 8 6 8 roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

8 6 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu E L E K T R Y K K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z e b r y n k

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

Metody numeryczne i programowanie

Metody numeryczne i programowanie Meoy Numerycze Progrmowe Sro z 53 Wył. Meoy umerycze progrmowe Mrusz B. Bogc Zł Iżyer Procesowej Wyzł Techolog Chemczej Polech Pozńs e-ml: Mrusz.Bogc@pu.poz.pl www.fc.pu.poz.pl/cv3.hm Pozń 009 Mrusz B.

Bardziej szczegółowo

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia

Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc

Bardziej szczegółowo

Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = =

Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = = Pomr jego dokłdość. Kżdy pomr dje m wyk z pewą ylko dokłdoścą, węc obcążoy je epewoścą pomrową (błędem pomrowym). Pomry fzycze dzelmy : bezpośrede pośrede. Pomrm bezpośredm zywmy ke, kórych wrość lczbową

Bardziej szczegółowo

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm

Bardziej szczegółowo

Immunizacja portfela

Immunizacja portfela Immuzaja porfela Sraega mmuzaj porfelowej [Redgo 9] polega a sworzeu porfela srumeów sało upoowh spełająego dwa waru: - spade e srumeów fasowh wwoła wzrosem sóp spo jes w peł reompesowa przez wzros dohodów

Bardziej szczegółowo

WIELORÓWNANIOWY MODEL LINIOWY. (MODEL REKURENCYJNY)

WIELORÓWNANIOWY MODEL LINIOWY. (MODEL REKURENCYJNY) WIELORÓWNANIOW MODEL LINIOW. (MODEL REKURENCJN) W odelu wspu edoeruowe pow d e opóo e edogec. W prpdu sosue s progoowe łcuchowe. Błd progo wc s dl dego rów oddele logce w odelu edorówow. Prłd. Fr lecł

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot. WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA INDUKCJI

WYZNACZANIE WSPÓŁCZYNNIKA INDUKCJI ĆWCZENE 6 Elektrzość mgetzm WYZNACZANE WSPÓŁCZYNNKA NDUKCJ. Op teoretz do ćwze zmezzo jet troe www.wt.wt.ed.pl w dzle DYDAKTYKA FZYKA ĆWCZENA ABORATORYJNE. . Op kłd pomrowego ĆWCZENE 6 Elektrzość mgetzm

Bardziej szczegółowo

METODY NUMERYCZNE W INZYNIERII WODNEJ

METODY NUMERYCZNE W INZYNIERII WODNEJ Romuld Szmewcz METODY UMERYZE W IZYIERII WODEJ Wdwcwo Polec Gdse Romuld Szmewcz METODY UMERYZE W IZYIERII WODEJ Gds PRZEWODIZĄY KOMITETU REDAKYJEGO WYDAWITWA POLITEHIKI GDAŃSKIEJ Jusz T eślńs REEZET Wd

Bardziej szczegółowo

2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =.

2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =. Obwody SLS prąd orsowgo SLS PO Obwody SLS prąd orsowgo o obwody SLS prcjąc w s soy przy pobdzch orsowych. Obwody zywy obwod prąd orsowgo OPO b obwod prąd odszłcogo OPO od sygł ssodgo. Mody posępow z OPO:

Bardziej szczegółowo

Wykład 6. Stabilność układów dynamicznych

Wykład 6. Stabilność układów dynamicznych Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog

Bardziej szczegółowo

WYZNACZENIE CZUŁOŚCI GALWANOMETRU ZWIERCIADŁOWEGO

WYZNACZENIE CZUŁOŚCI GALWANOMETRU ZWIERCIADŁOWEGO ĆWICZENIE 6 Elektzość Metzm WYZNACZENIE CZŁOŚCI GALWANOMET ZWIECIADŁOWEGO Ops teoetz do ćwze zmeszzo jest stoe www.wt.wt.ed.pl w dzle DYDAKTYKA FIZYKA ĆWICZENIA LABOATOYJNE. Ops kłd pomoweo s.. Shemt kłd

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1 METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n 6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1 Zks mtłu oowązuąy o zmu popwkowo z mtmtyk kls tkum st Dzł pomowy Dotyzy klsy Zks lz Wyksy włsoś uk wykłz symptot uk wykłz Fuk wykłz Pzsuę wyksu uk wykłz o wkto I loytmy Poę loytmu włsoś loytmów Olz loytmów,

Bardziej szczegółowo

Technika optymalizacji

Technika optymalizacji Nelowe zde optymlzj sttyzej ez ogrzeń - PN ez ogrzeń dr Ŝ. Ew Szlh Wydzł Eletro Ker.: Eletro III r. EZI Sformułowe owe zd optymlzj elowej ez ogrzeń: Fuj elu f( : Zde optymlzj poleg zlezeu wetor zmeyh deyzyjyh,

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos

impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos Rów Scrodgr Fucj flow wow rprcj jdo wrow pułp lroów fucj flow sońco sońco sud pocjłu o wodoru rów Scrodgr wprowd rową lro swobod lro w sońcoj sud pocjłu PRZYPOMNINI: Fl bżąc sojąc w pęj sru Hlld, Rsc,

Bardziej szczegółowo

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne

Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne r: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe wyłd r różczowe przylżoe cłowe umerycze r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc Perwsz pocod uc dec: ' lm Ozcze:

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

Struna nieograniczona

Struna nieograniczona Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei

Bardziej szczegółowo

Ż Ż Ż ę ęć Ą Ł ż Ę ę Ą Ż ń ń Ś ę Ć Ó Ó Ó Ó Ó Ę Ó ż Ż ę ż ż ń ę Ń Ą ż Ł ń Ę @ o (^ l r 3 d } LO l'*!q..\ C d 9 =i,ti 6!> +!!- t '7 - o Ń =ń il Ęt :l! Ź t 6 U >,o!ó =l O >,r o o = r d! dl.9 t t U> :il

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne cał Padaows Isu Tecolog Iormacjc w Iżer Lądowej Wdał Iżer Lądowej Poleca Kraowsa Rówaa różcowe wcaje W ajprossm prpadu posuujem ucj jedej meej recwsej x w posac: ( x órej pocoda ( x ma spełać rówae dae

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku?

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku? METODY NUMERYCZNE Wkłd. dr h.ż. Ktrz Zkrzewsk, prof.agh Met.Numer. wkłd Pl Aproksmc Iterpolc welomow Przkłd Met.Numer. wkłd Aproksmc Metod umercze zmuą sę rozwązwem zdń mtemtczch z pomocą dzłń rtmetczch.

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

BADANIE DRGAŃ RELAKSACYJNYCH

BADANIE DRGAŃ RELAKSACYJNYCH BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor

Bardziej szczegółowo

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.

Bardziej szczegółowo

DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH

DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 73 Electricl Engineering 3 Wojciech LIPIŃSI* DYDAYCZA PREZEACJA PRÓBOWAIA SYGAŁÓW ORESOWYCH Przedstwiono dydtyczną prezentcję próbowni przebiegów oresowych

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

Sytuacja regionalna w zakresie zagrożeń uzależnieniami. Perspektywa lokalna.

Sytuacja regionalna w zakresie zagrożeń uzależnieniami. Perspektywa lokalna. 1-7- Syuj rgol w zr zgrożń uzlżm. Prpyw lol. Słwomr P. Prz Używ loholu Młozż Choż rz w ągu łgo wojgo ży lohol pło 9,1% uzów z młozj grupy 96,% uzów z rzj grupy. W z oh prz bm pło 61,% 1 16- lów orz 4,%

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ W stronę bolog: dnama oulacj Martn. owa Evolutonar Dnamcs elna Press 6 SELEKCJ: JK JED POPULCJ (STRTEGI) WYPIER IĄ Model determnstczn ( a ) ( b ) : Dodając stronam mam a b czl średne dostosowane (ftness).

Bardziej szczegółowo

Johann Wolfgang Goethe Def.

Johann Wolfgang Goethe Def. "Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

ELEMENTY RACHUNKU WEKTOROWEGO

ELEMENTY RACHUNKU WEKTOROWEGO Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn

Bardziej szczegółowo

są dyspersjami wartości mierzonych parametrów A

są dyspersjami wartości mierzonych parametrów A Dopsoe ucj oej eou Dopsoe ucj oej eou Dopsoe ucj oej Ze Y jest oą ucją X Y A A X W poró Y ją rozłd or o dspersj Y tór ogó przpdu róeż zeż od X. Wrtośc X e są orczoe łęd u jgorsz pdu oż je poąć poróu z

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze

Bardziej szczegółowo

Metody obliczeniowe. Semestr II

Metody obliczeniowe. Semestr II Metody olczeowe Semestr II Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch. Rozwązywe ułdów rówń lowych. Metody ezpośrede tercye.. Sposoy rozwązyw rówń elowych, zgdee optymlzc.. Aprosymc

Bardziej szczegółowo