1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA
|
|
- Weronika Kołodziejczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 .4. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA.4.. Wetor przemeszcze Rozwżmy bryłę (cło mterle) o dowolym sztłce meszczoą w prostoątym łdze odese O (rys. ) Rys. gdze ozcz położee (mesce) pt mterlego w tym łdze,,, są ego współrzędym,,, wersorm (wetorm edostowym) os łd odese. Brył eobcążo zme w trówymrowe przestrze obszr B, zwy ofgrc początową (eobcążoą). Pod wpływem sł zewętrzych (powerzchowych msowych) brył odsztłc sę, zmąc owy obszr B, zwy ofgrcą ońcową (odsztłcoą). Pt mterly bryły (cząst mterl) zmący w ofgrc początowe położee zdze sę, ste odsztłce bryły, w położe. Wetor o począt w pce ońc w pce zywmy wetorem przemeszcze, [m]. Poewż przemeszczee żdego pt mterlego bryły est w ogólośc e, ztem wetor te est fcą położe, () Współrzęde,, wetor przemeszczeń w zgdech żyersch ozcz sę o, v, w..4.. Tesor odsztłceń Rozptrzymy przemeszczee dwóch dowole wybrych ptów mterlych bryły, zdących sę esończee blso sebe. Nech perwszy z ch zme w ofgrc początowe położee, zś drg d. Pod wpływem obcąże pty te przemeszczą sę odpowedo o d, zmąc w ofgrc ońcowe (odsztłcoe) owe położee, czyl d, róweż esończee blso sebe (rys. ).
2 Rys. Z rys tego wy, że d d d' d' d d () Sąd otrzymemy d d d () Poewż, ztem d (4) d d, w osewec d d d, d d, d, (5) Jo mrę odsztłce bryły w dym pce możemy przyąć różcę odległośc mędzy rozwżym ptm po odsztłce przed odsztłceem, lb co est wygodesze różcę wdrtów tych odległośc, czyl d d d d. Poewż d d d d orz d d dd dd, ztem d d d d dd d d (6) Poewż z (5) wy, że dd,, dd,,,,,,,, dd d d (7) ztem podstwąc (7) do (6) względąc, że d d, otrzymemy,,,, dd edd d d d d (8)
3 Powyższą zleżość moż przedstwć w eco e, łtwesze w terpretc, postc, mowce e dd d d e d d d d e d d d d (9) Poewż edd d E d orz dd d d, gdze est tesorem edostowym, ztem Tesor E d d d d () E e zywmy tesorem odsztłceń. Z () wy, że tesor te przyporządowe wetorow d w ofgrc początowe (eodsztłcoe) wdrt dłgośc d d d wetor d w ofgrc ońcowe (odsztłcoe). Poewż welość t w żdym pce bryły est zleż od er wetor d, ztem tesor odsztłceń E oreśl st odsztłce w pce. Z (8) wy, że współrzęde rówm geometryczym e E tego tesor oreśloe są stępącym e,,,, () Z rówń tych wy, że tesor odsztłceń est elową fcą pochodych przemeszczeń (elowość geometrycz). Powode to dże trdośc oblczeowe. Poewż ed w przypd węszośc ostrc bdowlych pochode przemeszczeń są brdzo młe, ztem zwąz () moż zleryzowć. Z przyłd P w rozdzle. wy, że w przypd bel twerdzoe o dłgośc l sztywośc E, obcążoe ońc słą spoą P, msymle gęce w l (pochod gęc) l wymg, by m m Pl, zś msymly obrót E Pl m,. Wy stąd, że m w m. Poewż wre sztywośc E l l m, l wm.. 5 l w, ztem,,,,. Możemy ztem przyąć, że, w zleżośc () pomąć loczyy Otrzymmy w te sposób wyrżee,, () oreślące tesor młych odsztłceń CAUCHY EGO, tóry est lową fcą pochodych przemeszczeń. Tesor te est tesorem drgego rzęd m 9 współrzędych. Jed z () wy, że tesor odsztłceń est symetryczy,, węc lczb ego ezleżych współrzędych wyos sześć.
4 Powyższe zleryzowe zwąz łączące współrzęde tesor odsztłceń z pochodym współrzędym wetor przemeszczeń, zwe są rówm geometryczym CAUCHY EGO. Po rozps ch względem wsźów,,, otrzymmy sześć stępących rówń slrych:,,,,,,,,,,, ().4.. terpretc geometrycze współrzędych tesor odsztłceń W przypd młych odsztłceń zleżość (9) moż zpsć o gdze d d d d d d d d d d d d (4) d d, d d, tomst różc d d est przyrostem dłgośc d w stępstwe odsztłce. Poewż w przypd młych odsztłceń możemy przyąć d d d d d, ztem zleżość (4) przyme postć d dd dd Dzeląc (5) strom przez d otrzymemy (5) d d d d d d d (6) Lew stro powyższego wzor przedstw względy przyrost dłgośc d ste odsztłce. Nech d d ozcz wetor rówoległy w ofgrc początowe do os O (rys. ) Rys. 4
5 d d d Poewż,, ztem (6) przyme postć d d d d d d (7) z tóre wy, że est względym przyrostem dłgośc elemet d, tóry w ofgrc początowe był rówoległy do os, ste ego odsztłce. Podob est terpretc współrzędych. Dltego współrzęde te zywmy odsztłcem lowym. Przedstwąc pt mterly w postc sześc o edostowych rwędzch, możemy współrzęde,, tesor odsztłceń terpretowć o przyrosty dłgośc ego rwędz. Rozwżmy z ole dw elemety lowe d d orz d d o wspólym począt, leżące w płszczyźe O, przy czym perwszy z ch w ofgrc początowe est rówoległy do os O zś drg do O (rys. 4). Rys. 4 W tm przypd zleżość () przyme postć d d d d d d d d d (8) Ze wzor (4) wy, że d d d d, d, d,d,d,d,d,d,d,d,d (9) Podstwąc (9) do (8) dostemy d d,, d d d d () 5
6 Dzeląc perwszą z powyższych relc przez d, zś drgą przez d. otrzymemy d d d d,, () gdze orz są wetorm edostowym, o er zwroce zgodym z wetorm d orz d. W () przyęto, że wg młe odsztłce d d. loczy slry powyższych wetorów est rówy cos,,,,,,,,,,,,,,,, () gdze z wg młe odsztłce przyęto, ż.,, Jeśl ozcz zmę ąt prostego medzy rozwżym elemetm d d, to z wg młe odsztłce możemy psć, że s s cos () Oblcząc zmę ąt medzy esończee młym wetorm leżącym w płszczyzch O orz O otrzymmy podobe wyrże. Czyl cos cos cos (4) Powyższe współrzęde tesor odsztłceń zywmy odsztłcem ątowym (postcowym). Przedstwąc pt mterly w postc sześc o edostowych rwędzch, możemy współrzęde,, terpretowć o zmy ąt prostego mędzy ego rwędzm (sześc ste sę rówoległoścem) Wr erozdzelośc W rówch geometryczych () do wyzcze trzech fc opsących pole przemeszczeń słży sześć fc opsących pole odsztłceń. Wy stąd, że współrzęde tesor odsztłce e mogą być ezleże mszą spełć dodtowe wr. 6
7 Wr te otrzymemy różcząc dwrote rów () zmeąc oleo wsź, l l,, l l,, l, l, l, l, l l,, l l, (5) Dodąc dw perwsze rów strom, od wy odemąc dw pozostłe, otrzymemy stępące zwąz mędzy współrzędym tesor odsztłceń: (6), l l,, l l, zwe wrm (rówm) erozdzelośc (cągłośc). Chocż rówń tych est 4 8, to ed tylo sześć z ch est ezleżych (róż sę medzy sobą). Otrzymemy e przymąc w powyższych rówch l. Czyl osttecze (7),,,, Spełee powyższych rówń ozcz, że ośrode cągły przed odsztłceem est róweż cągły po odsztłce, zś żdem ptow mterlem bryły w ofgrc początowe odpowd dołde ede pt w ofgrc ońcowe z zchowem sąsedztw elemetów. De to ztem gwrcę, że po odsztłce w ośrod e powstą pst myślowo wycęte elemety cł e będą sę przeły Mcerz odsztłceń Współrzęde [ ] tesor odsztłceń możemy zpsć w postc mcerzy wdrtowe y z y y zy z yz z (8) zwe mcerzą odsztłceń (obo ozczeń elemetów mcerzy odsztłceń wyorzystywych w szych rozwżch powyże przedstwoo róweż ozcze lsycze, wyorzystywe w zgdech żyersch). N główe przeąte te mcerzy leżą odsztłce lowe,,, tomst poz głów przeątą odsztłce ątowe (postcowe),,. 7
8 .4.6. Odsztłce główe Wrtośc główe tesor odsztłceń oblczmy z rów chrterystyczego (9) gdze () są ezmem mcerzy odsztłceń. Z wg symetrę mcerzy odsztłceń, powyższe rówe m trzy perwst rzeczywste,, ; żdem z tych perwstów (odsztłceń główych) przyporządowy est ere główy oreśloy wetorem ormlym,,,,czyl,,,,,, () przy czym współrzęde erów główych tesor odsztłceń wyzczmy z rówń () Wetory główe są ortoormle, czyl mszą spełć wr,, () W łdze odese wyzczoym przez er główe mcerz odsztłceń m postć 8
9 9 (4) zś e ezme oreślą zleżośc (5).4.7. Względ zm obętośc Rozptrzmy sześc, tórego rwędze o dłgośc edostowe są w ofgrc początowe rówoległe do erów główych (rys. 5). Rys. 5 Obętość tego sześc wyos V. Po odsztłce sztłt sześc sę e zme, zś ego obętość będze rów V. Względ zm obętośc tego sześc wyos V V V (6) Z wg złożee o młych odsztłcech, w powyższym wyrże pomęto loczyy odsztłceń główych Porówąc (), (5) (6) otrzymemy V V V (7)
10 Wy stąd, że względ zm obętośc edostowego sześc, zw dyltcą, est rów perwszem ezmeow mcerzy odsztłceń Astor dewtor odsztłceń Tesor odsztłceń moż przedstwć o smę dwóch tesorów (8) d Perwszy z ch, czyl (9) m zywmy storem odsztłceń (tesorem lstym), przy czym m (4) est średm odsztłceem lowym, tomst drg, węc d (4) m dewtorem odsztłceń. Astor odsztłceń opse zmę obętośc elemetrego sześc, tomst dewtor zmę ego postc (sztłt). Współrzęde tych tesorów przedstwą mcerze m m m (4) d m m m (4) J łtwo sprwdzć, perwszy ezme stor odsztłceń est rówy perwszem ezmeow tesor odsztłceń, czyl, tomst perwszy ezme d dewtor odsztłceń est rówy zer, węc. m.4.9. Płs st odsztłce Płs st odsztłce występe wtedy, gdy w żdym pce bryły ed współrzęd wetor przemeszcze płszczyźe prostopdłe do ede z os łd odese est rów zer, zś pozostłe współrzęde tego wetor są fcm tylo dwóch zmeych oreślących położee pt te płszczyźe. Przymmy ztem,
11 że osą tą est O, tomst płszczyzą O. W tm przypd, tomst pozostłe współrzęde wetor przemeszczeń są fcm, czyl,,,,. Poewż z () wy, że w tm przypd,,,,,,,, ztem. W tm przypd płszczyz O est płszczyzą główą, tóre, zś w bryle występą tylo odsztłce. T st odsztłce występe p. w brdzo dłge śce rówomere obcążoe w płszczyźe O (rys. 6). Rys. 6 W przypd płsego st odsztłce mcerz odsztłceń moż przedstwć w postc (44) Wrtośc główe te mcerzy wyzczmy z rów chrterystyczego (9), tóre, z wg, tym smym, przyme stępącą postć: gdze są ezmem mcerzy węszy od zer (dodt) (45) (46). Poewż wyróż powyższego rów est zwsze (47) ztem estremle wrtośc odsztłceń (perwst powyższego rów), czyl odsztłce główe, oreślą stępące relce:
12 m m 4 4 (48) Kżdem z tych odsztłceń główych przyporządowy est ere główy oreśloy wetorem ormlym,,,czyl,, (49) Do wyzcze erów główych wyorzystemy łd rówń (5) z dodtowym wrem ortoormlośc wetorów wyzczących er główe (5) Z wr tego wy, że (5) W łdze odese wyzczoym przez er główe mcerz odsztłceń m postć zś e ezme oreślą zleżośc (5) (54) Przyłd. Wyzczyć porówć ezme stępących, dwóch mcerzy odsztłceń:
13 De: 5, 6, 4, 4, 4,,,, Sze:,,,,, Rozwąze: Kro. Korzystąc ze wzorów () oblczmy ezme perwsze mcerzy Kro. Korzystąc ze wzorów (5) oblczmy ezme drge mcerzy Kro. Porówemy ezme ob mcerzy. Z porów tego wy, że ,, Poewż ezme ob mcerzy są sobe rówe, ztem ch elemety są współrzędym tego smego tesor odsztłceń w dwóch różych łdch odese (drg z ch tworzą ose główe). Przyłd. Wyzczyć mcerz odsztłceń w przypd bryły, tór w ofgrc początowe (eobcążoe) B est sześcem o edostowych rwędzch (rys. P.) Rys. P. eśl pole przemeszczeń oreśloe est wetorem, b (odsztłcoą) B bryły. De:,, b,, b,. Wyzczyć ofgrcę ońcową
14 4 Sze: B, Rozwąze: Kro. Wyzczmy mcerz odsztłceń () Oblczmy pochode wetor przemeszczeń b,,,,,,,,,, ; () Korzystąc ze wzorów () oblczmy współrzęde mcerzy odsztłceń b, ; () Podstwąc powyższe współrzęde do mcerzy (8) otrzymemy stępącą mcerz odsztłceń b Z postc powyższe mcerzy wy, że w bryle występą tylo odsztłce lowe są to odsztłce główe b,. Kro. Wyzczmy ofgrcę ońcową (odsztłcoą) bryły Poewż zdy wetor przemeszczee est lową fcą położe (czyl zmeych ), to w cel wyzcze ofgrc ońcowe bryły wystrczy oblczyć przemeszczee werzchołów sześc, Wyorzystemy do tego wzór b, :,, : :, :, :,, :, : : b G b F b E D b C B A O G F E D C B A O Kofgrcę ońcową (odsztłcoą) bryły przedstw rys. P. Rys. P.
15 Przyłd. Wyzczyć mcerz odsztłceń w przypd bryły, tór w ofgrc początowe (eobcążoe) est sześcem o edostowych rwędzch (rys. P.) eśl pole przemeszczeń oreśloe est wetorem,. Wyzczyć ofgrcę ońcową (odsztłcoą) bryły. De:,,, Sze:, B Rozwąze: Kro. Wyzczmy mcerz odsztłceń () Oblczmy pochode wetor przemeszczeń,,,,,,,,, ;, () Korzystąc ze wzorów () oblczmy współrzęde mcerzy odsztłceń ; () Podstwąc powyższe współrzęde do mcerzy (8) otrzymemy stępącą mcerz odsztłceń Z postc powyższe mcerzy wy, że w bryle występą tylo odsztłce ątowe (postcowe) cos. Kro. Wyzczmy ofgrcę ońcową (odsztłcoą) bryły Poewż zdy wetor przemeszczee est lową fcą położe (czyl zmeych ), to w cel wyzcze ofgrc ońcowe bryły wystrczy oblczyć przemeszczee werzchołów sześc, Wyorzystemy do tego wzór O : A : B : F : G :,,, C : D : E :,,,,, O E A C D G B F Kofgrcę ońcową (odsztłcoą) bryły przedstw rys. P. 5
16 Rys. P. 6
1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA
J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys.
Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka
lgebr mcerzow e te (rót prowzorycz powtór (uwg: tutj jest ezupełe osewet otcj tj. mcerze czsem są pogruboe czsem ursywe (tlcs) proszę sę e przejmowć t po prostu wyszło) PEWNE WZNE OPERCJE MCIERZOWE ozcz
Metody numeryczne w przykładach
Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.
CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Metody numeryczne procedury
Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe
Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.
Metody obliczeniowe. Semestr II
Metody olczeowe Semestr II Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch. Rozwązywe ułdów rówń lowych. Metody ezpośrede tercye.. Sposoy rozwązyw rówń elowych, zgdee optymlzc.. Aprosymc
SZTUCZNA INTELIGENCJA
SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,
utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
11. Aproksymacja metodą najmniejszych kwadratów
. Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc
Charakterystyki geometryczne przekrojów poprzecznych prętów
Chrkterystyk geometrycze przekrojów poprzeczych prętów Zgode z złożem mechk ukłdów prętowych rzeczywste trójwymrowe cło odksztłcle modelowć będzemy ukłdem jedowymrowym, w którym formcje dotyczące wymrów
Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.
chł zdows Istytut echolog Iforcyych w Iżyer ądowe Wydzł Iżyer ądowe oltech Krows Iterpolc Iterpolc oże być trtow o szczególy przypde prosyc polegący ty że fuc prosyow fuc prosyuąc przyuą te se wrtośc w
Aproksymacja funkcji
Aprosymcj fcj. Ogóle sformłowe zgde prosymcj jedowymrowej Sformłowe zgde prosymcj D - prosymcj cągł: zleźć fcję p( x ) prosymjącą (zstępjącą, przylżjącą) dą fcję cągłą ( ) f x w przedzle [ ] p( x ) powy
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej
Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci
Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)
Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n
lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
PRZEPŁYWY MIĘDZYGAŁĘZIOWE. tablica przepływów międzygałęziowych
PRZEPŁYWY IĘDZYGŁĘZIOWE. [] Jeą z meto lzy zleŝośc wystęuących w rocesch tworze ozłu roukc mterle są metoy rzeływów męzygłezowych (lzy kłów wyków, lzy utoutut). zł Elemetrym osem ukłu est tut tzw. tlc
Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.
Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 6 ( ) Plan wykładu nr 6. Politechnika Białostocka. - Wydział Elektryczny
Podstwy formty Wyłd r / Podstwy formty Pl wyłdu r etody tercyje rozwązyw ułdów rówń lowych: metod tercj prostej (Jcobego) metod Guss-Sedel Poltech Błostoc - Wydzł Eletryczy Eletrotech, semestr II, stud
Rozpraszania twardych kul
Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
PROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
Nadokreślony Układ Równań
Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).
Reprezentacja krzywych...
Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
WYKŁAD 1. Rozdział 1: Wiadomości wstępne Istota, występowanie i znaczenie drgań
WYKŁAD Rozdzł : Wdomośc wstępe.. Istot, występowe zczee drgń Drgem zywmy przebeg czsowy dowolej welkośc fzyczej, p. przemeszcze tłok w cyldrze slk splowego, kąt obrotu wrk, tęże prądu w obwodze elektryczym
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
Prawdopodobieństwo warunkowe. Niezależność zdarzeń
RCHUNEK RWDOODOIEŃSTW WYKŁD. rwopoobeństwo wruowe. Nezleżość zrzeń rzył. Rzucmy rz symetryczą sześceą ostą. e zrzee {, 4, 6} - wypł przyst lczb ocze m szsę zjśc rówą 0,5. Zobylśmy formcję, że wypły jwyżej
Zmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
7. SFORMUŁOWANIE IZOPARAMETRYCZNE
7. SFORMUŁOWAIE IZOPARAMETRYCZE 7. SFORMUŁOWAIE IZOPARAMETRYCZE W poprzedch rozdzłch omówlśm elemet skończoe formłowe z pomocą tzw. współrzędch ogóloch. Zkłdlśm że przemeszcze elemet zmeą sę zgode z przętm
I. RACHUNEK TENSOROWY
Kodr P. Mch ośrodów cąłych 9. RACHUNEK TENSOROWY. Prmtryc prstr pryęc łd współrędych D st prstrń Eds trówymrow. Kżdy pt t prstr dfowy st pr tróę cb wych współrędym to pt. W prstr Eds ws moż dfowć rtńs
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Badania Operacyjne (dualnośc w programowaniu liniowym)
Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)
Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }
Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca
VIII. RÓŻNICZKOWANIE NUMERYCZNE
VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +
ELEMENTÓW PRĘTOWYCH. Rys.D3.1
DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej
Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = =
Pomr jego dokłdość. Kżdy pomr dje m wyk z pewą ylko dokłdoścą, węc obcążoy je epewoścą pomrową (błędem pomrowym). Pomry fzycze dzelmy : bezpośrede pośrede. Pomrm bezpośredm zywmy ke, kórych wrość lczbową
Prawo propagacji niepewności. 1
Prwo propgc nepewnośc. Prwo propgc nepewnośc. W przpdk pomrów metodą pośredną wrtość welkośc stl sę n podstwe wrtośc nnch welkośc zmerzonch bezpośredno. przkłd obętość V 0 prostopdłoścn o krwędzch D 0
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
O JEDNOZNACZNOŚCI ROZWIĄZAŃ RÓWNAŃ POLA ELEKTROMAGNETYCZNEGO W OBSZARZE ANIZOTROPOWYM I NIESTACJONARNYM
ELEKTRYK 4 Zeszy 4 3 Rok LX Drsz PŁEK Polechk Śląsk w Glwcch O JEDNOZNCZNOŚCI ROZWIĄZŃ RÓWNŃ POL ELEKTROMGNETYCZNEGO W OBZRZE NIZOTROPOWYM I NIETCJONRNYM reszczee. rykł prezeje rozwż eoreycze, doyczące
Polaryzacja i ośrodki dwójłomne. Częśd II
Polaryzacja ośrodk dwójłome Częśd II Dwójłomość wymuszoa Dwójłomośd wymuszoa zjawsko powstawaa lub zmay dwójłomośc ośrodka zotropowego lub azotropowego pod wpływem zewętrzych czyków fzyczych. Czyk zewętrze:
SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA
POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm
1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Zasada wariacyjna mechaniki kwantowej
Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
ELEMENTY TEORII GIER
ELEMENTY TEORII GIER Śwt s otcząc pełe est koflktów rwlzc. Moż weć lcze przkłd stuc deczch, ędz : wo, kpe poltcze, kpe reklowe rketgowe rwlzuącch ze sobą fr wele ch, w którch do cze z koflkte ędz ch uczestk.
G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC
Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
TENSOR W ZAPISIE LAGRANGE A I EULERA
TENSOR W ZAPISIE LAGRANGE A I EULERA N postwe skłowych wektor przemeszczeń obczmy skłowe tensor oksztłcen. Tensor oksztłcen może być w zpse Lgrnge b Eer. We współrzęnych Lgrnge rch cząsteczk est opsny
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA
prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Lista 6. Kamil Matuszewski X X X X X X X X X X X X
Lsta 6 Kaml Matuszewsk 9..205 2 3 4 5 6 7 9 0 2 3 4 5 6 7 X X X X X X X X X X X X Zadae Lewa stroa: W delegacj możemy meć od do osób. Wyberamy ( k) osób a k sposobów wyberamy przewodczącego. k =.. węc
LABORATORIUM DYNAMIKI MASZYN
LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,
Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.
ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej
Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
啇c go b kt ᆗ匷 y l y s l g y l. P ysł ᆗ匷 ᆗ匷 s ob kt b o l go ᆗ匷 l. P ysł ᆗ匷ᆗ匷.. ᆗ匷ᆗ匷ᆗ匷 ᆗ匷ᆗ匷ᆗ匷ᆗ匷 啇c go Pᆗ匷ᆗ匷 ᆗ匷 ᆗ匷 s 啇c go l. ᆗ匷. 呷b s ᆗ匷ᆗ匷 ᆗ匷2-500 ᆗ匷 s o ot o co 啇c go ᆗ匷 P ó O g Z I s y TECHPLAN ᆗ匷 ᆗ匷