Metody numeryczne i programowanie
|
|
- Krystian Wróblewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Meoy Numerycze Progrmowe Sro z 53 Wył. Meoy umerycze progrmowe Mrusz B. Bogc Zł Iżyer Procesowej Wyzł Techolog Chemczej Polech Pozńs e-ml: Mrusz.Bogc@pu.poz.pl Pozń 009 Mrusz B. Bogc Sro z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
2 Meoy Numerycze Progrmowe Sro z 53 Wył. Sps reśc. Poswowe pojęc zwąze z olczem umeryczym. Rozwązywe ułów rówń lowych 3. Welomow erpolcj prosymcj 4. Numerycze rozwązywe rówń elowych 5. Numerycze różczowe cłowe 6. Meoy rozwązyw zgeń począowych l rówń różczowych zwyczjych Mrusz B. Bogc Sro z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
3 Meoy Numerycze Progrmowe Sro 3 z 53 Wył. Tyzeń Hrmoogrm zjęć z przemou Meoy umerycze z progrmowem proje Zge Progrmowe włsych proceur w progrme MhC Sruury serujące: ezpośree sępswo, wyór wruowy, ogrczo pęl ercyj, wruow pęl ercyj, zgeżżee, reurecj. Przezywe ych o proceury wyów olczeń z proceury o progrmu MhC. Proceury: zm lczy zesęej rą, zjowe perwsów rów wrowego meoą lsyczą z wyorzysem wzorów Vee, zorągle lczy rzeczywsej o zej lczy cyfr, N!, cąg Foccego. Arymey mszyow Mszyow reprezecj lcz, sysem wójowy, sło zmeopozycyjy zps lcz, łą zorągle, lcz cyfr zczących, olcze mszyowe w sło zmeo pozycyjej rymeyce, łą ocęc. Numerycze rozwązywe rówń lowych Meo elmcj Guss rozwązyw rówń lowych. Uwruowe z umeryczego, lcz uwruow. 7 Kolowum I Welomow prosymcj fucj Aprosymcj fucj, wzór Tylor, resz welomutylor, prosymcj fucj z wyorzysem rozwęc w szereg Tylor, łą prosymcj z zsosowem wzoru Tylor. Welomow erpolcj fucj Ierpolcj fucj, erpolcyje welomy Lgrge, wyprowzee wzorów welomy Lgrge sop perwszego rugego, zsosowe welomów Lgrge o erpolcj, łą erpolcj welomm Lgrge. Numerycze zjowe perwsów rówń elowych Proces ercyjy, wyprowzee wzorów meoę secj, seczych meoę Newo Rphso, rzą meoy, oszcowe łęu. Numerycze różczowe cłowe fucj Dwupuowe umeryczego różczow fucj: meo różcow progresyw, wsecz cerl, wyprowzee meo, łą zorągle łą ocęc meo różcowych. Meoy umeryczego olcz wrośc cł fucj: wyprowzee wzorów meoę rpezów meoę Smpso, łą ocęc w meoze rpezów meoze Smpso. Meoy ompozycyje olcz wrośc cł fucj zuowe ze meoy rpezów Smpso: wyprowzee łą ocęc. 4 Zjęc powórowe 5 Kolowum II Mrusz B. Bogc Sro 3 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
4 Meoy Numerycze Progrmowe Sro 4 z 53 Wył. Lerur zlec. Jowscy, J. M., Przeglą meo lgorymów umeryczych. Część. Wy. Nuowo-Techcze, Wrszw, 98.. Dryj, M., Jowscy J. M., Przeglą meo lgorymów umeryczych. Część. Wy. Nuowo-Techcze, Wrszw, Foru, Z., Mcuow, B., Wącows, J., Meoy umerycze, Ser Poręcz Aemce: Elero, Iformy Teleomucj, Wy. IV, Wy. Nuowo- Techcze, Wrszw, Fuse, L., Numercl Mehos Usg MhC, Prece Hll, Upper Sle Rver, ew Jersey, USA, Bure, R. L., Fres, J. D., Numercl Alyss. Thr Eo, PWS KENT Pulshg Compy, Boso, USA, 985. Mrusz B. Bogc Sro 4 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
5 Meoy Numerycze Progrmowe Sro 5 z 53 Wył. Dlczego wył z meo umeryczych? () Meoy umerycze są wżym rzęzem w welu zezch: - Iżyer merłow; - Dym płyów; - Chem; - Iżyer chemcz. Mrusz B. Bogc Sro 5 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
6 Meoy Numerycze Progrmowe Sro 6 z 53 Wył. Dlczego wył z meo umeryczych? () Trycyje meoy lzy prolemu projeow żyersego: - Meoy esperymele; - Alycze: moel memyczy jego symolcze rozwąze. Meoy olczeowe symulcyje - Nowe rzęze o lzy projeow żyersego; - Sow uzupełee meo rycyjych; - Pozwl e rzej złożoych moel żel meoy symolcze; - Pozwl przee wpływu węszej lośc prmerów żel meoy esperymele; - Reuuje osz czs ń Mrusz B. Bogc Sro 6 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
7 Meoy Numerycze Progrmowe Sro 7 z 53 Wył. Dlczego wył z meo umeryczych? (3) Meoy olczeowe symulcyje Połączee welu elemeów: ) Wez memycz: - lger low, - lz memycz, - meoy umerycze. ) Wez formycz: - uow ompuerów, - sysemy opercyje, - języ progrmow. Mrusz B. Bogc Sro 7 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
8 Meoy Numerycze Progrmowe Sro 8 z 53 Wył. Dlczego wył z meo umeryczych? (4) Symulcje ompuerowe jo rzęze prcy. Wszć oszr ń: - zefowć prolem, - zefowć zór fucj, z jch możemy orzysć, - ogrczyć czs ń.. Przyjąć zsy ysreyzcj prolemu - zefowć wymrowość prolemu, - przyjąć zsy, co o uprszcz zge, - wszć źrół łęów olczeowych oszcowć ch wpływ wy ońcowy. Mrusz B. Bogc Sro 8 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
9 Meoy Numerycze Progrmowe Sro 9 z 53 Wył. Mszyow reprezecj lcz cłowych () Neumows rcheur ompuer: ) je pmęć używ o zpsu zrówo srucj j eż ych, ) wszyse ypy ych zpsywe są w ej smej pmęc - orzyść: rzo sprwe wyorzyse pmęc, - w: róże ypy ych e mogą yć rozpoze jeozcze, o sposoe ch erpreow ecyuje oprogrmowe. Mrusz B. Bogc Sro 9 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
10 Meoy Numerycze Progrmowe Sro 0 z 53 Wył. Mszyow reprezecj lcz cłowych () Pmęć w ompuerze: - pojeycz jeos pmęc (g. Bry g) zwer 0 lu, - cąg ośmu ów worzy j, - w PC w jy (6 ów) worzą słowo mszyowe, - oprogrmowe oreśl j e słowo jes erpreowe. Przył: lcz cłow ez zu: 60369, - lcz cłow z zem: , - 3-zowy łńcuch: l, Mrusz B. Bogc Sro 0 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
11 Meoy Numerycze Progrmowe Sro z 53 Wył. Mszyow reprezecj lcz cłowych (3) Dzesęy sysem pozycyjy Korzysmy z zesęcu zów cyfr o o 9 orz cyfry 0. - Kż cyfr możo jes przez opoweą poęgę poswy (0) zleżą o pozycj cyfry. - Pozycję cyfry lczymy o prwej o lewej. - Pomożee owolej cyfry przez -ą poęgę poswy przesuw ją o pozycj w lewo. Mrusz B. Bogc Sro z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
12 Meoy Numerycze Progrmowe Sro z 53 Wył. Mszyow reprezecj lcz cłowych (4) Dzesęy sysem pozycyjy Słowo mszyowe Nr cyfry Cyfr Moż Rysue.. Reprezecj lczy urlej wrz z wroścm poszczególych cyfr w zesęym ułze pozycyjym. Celem oreśle wrośc lczy zesęej leży wyoć sępujące olcze: 0 0 K K (.) Mrusz B. Bogc Sro z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
13 Meoy Numerycze Progrmowe Sro 3 z 53 Wył. Mszyow reprezecj lcz cłowych (5) Dwójowy sysem pozycyjy Korzysmy z wóch cyfr: 0 orz Kż cyfr możo jes przez opoweą poęgę poswy () zleżą o pozycj cyfry. - Pozycję cyfry lczymy o prwej o lewej. - Używy o zpsu resów w ompuerze, zów orz orzów. - Dorze ososowy o zpsu procesów logczych: prw, fłsz 0. - Łwy o zprojeow w ułch fzyczych opow wóm pozomom góry oly 0. - Mło przyjzy o zpsu czy lcz przez luz zy wele cyfr. Mrusz B. Bogc Sro 3 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
14 Meoy Numerycze Progrmowe Sro 4 z 53 Wył. Mszyow reprezecj lcz cłowych (6) Dwójowy sysem pozycyjy Słowo mszyowe Nr u B Moż Rysue.4. Ierprecj wrośc lczy urlej zpsej w wójowym ułze pozycyjym Celem oreśle wrośc lczy rej leży wyoć sępujące olcze: 0 c c cc0c c K c c0 K. (.) 0 Mrusz B. Bogc Sro 4 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
15 Meoy Numerycze Progrmowe Sro 5 z 53 Wył. Mszyow reprezecj lcz rzeczywsych () Słopozycyj reprezecj lcz rzeczywsych zesęych Sł gzow: Lcz Avogro: N Lcz cyfr przezczoych część cłową ułmową jes z góry uslo sł. - Położee rop (przec) ozeljącego część cłową o częśc ułmowej jes ezmee. - Jeżel rzą lczy ęze mejszy o lczy cyfr częśc ułmowej, o lcz zpmę zose jo zero. - Rzo sosowy sposó zpsu lcz w ompuerch. Njczęścej moż go spoć w prosych lulorch. Mrusz B. Bogc Sro 5 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
16 Meoy Numerycze Progrmowe Sro 6 z 53 Wył. Mszyow reprezecj lcz rzeczywsych () Słopozycyj reprezecj lcz rzeczywsych zesęych Słowo mszyowe Nr cyfry Cyfr B zu Część cłow lczy e cyfr Część ułmow lczy cyfr Z ± c e- c e- c c 0 m - m - m - m - Moż 0 e- 0 e Rysue.. Reprezecj lczy rzeczywsej wrz z wroścm poszczególych cyfr w słopozycyjym zpse mszyowym. Wrość lczy rzeczywsej zpsej w sposó słopozycyjy wy z sępującego wzoru: 0 c c m 0 c 0 0 Kc c. m c 0 0 c m j 0 0 m m j Km 0 j K m. m 0 K c 0 c 0 0 m (.3) Mrusz B. Bogc Sro 6 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
17 Meoy Numerycze Progrmowe Sro 7 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (3) Słopozycyj reprezecj lcz rzeczywsych rych Słowo mszyowe Nr u m m m- - 0 B m m m- - 0 Z Część cłow Część ułmow c c c - c c 0 c - c - c - c - Moż s Rysue.6. Dwójowy zps lczy rzeczywsej w reprezecj słopozycyjej wrz z erprecją wrośc poszczególych ów. Wrość lczy rzeczywsej zpsej w sposó słopozycyjy wy z sępującego wzoru: c c s c c c c c c c s c c c c c c c c j j j K K K K (.4) gze: s z lczy. W oze z mouł prosy: 0. gy,, gy, c c c s (.5) Mrusz B. Bogc Sro 7 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
18 Meoy Numerycze Progrmowe Sro 8 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (4) Zmeopozycyj reprezecj lcz rzeczywsych zesęych Lcz Avogro: N Położee rop zesęej jes zmee. Zleży o wył poęgowego przy poswe ułu lczowego (0). - Reprezecj zmeopozycyj jes rzej użyecz o słopozycyjej w przypu zpsu lcz rzo użych rzo młych. - Nzywy jes róweż zpsem wyłczym lu uowym. Mrusz B. Bogc Sro 8 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
19 Meoy Numerycze Progrmowe Sro 9 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (5) Zmeopozycyj reprezecj lcz rzeczywsych zesęych Posć zormlzow: c ( ) m sg 0, (.4) 0 gze:, gy > 0, sg ( ) 0, gy 0,, gy < 0, (.5) perwsz cyfr mysy róż o zer: 0. m <, c 0 log. (.6) Zps ozcz jmejszą lczę cłową węszą ż. N przył l.76 mmy 76 3., oms l -.76 mmy.76. Mrusz B. Bogc Sro 9 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
20 Meoy Numerycze Progrmowe Sro 0 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (6) Zmeopozycyj reprezecj lcz rzeczywsych zesęych Słowo mszyowe Nr cyfry Cyfr B zu e cyfr cechy c cyfr mysy m Cyfr ± c e- c e- c c 0 m - m - m - m - Moż 0 e- 0 e Rysue.3. Ierprecj poszczególych cyfr lczy rzeczywsej zpsej w zmeopozycyjym reprezecj mszyowej. Wrość lczy rzeczywsej zpsej w sposó zmeopozycyjy wy z sępującego wzoru: 0 K ce ce K c c0 B s 0. m m m m 0 Mrusz B. Bogc Sro 0 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
21 Meoy Numerycze Progrmowe Sro z 53 Wył. Mszyow reprezecj lcz rzeczywsych (7) Zmeopozycyj reprezecj lcz rzeczywsych rych Posć zormlzow: gze: z. c ( ) m sg, (.6) mys m jes lczą z przezłu m <, cech c log jes jmejszą lczą cłową węszą o logrymu o poswe Mrusz B. Bogc Sro z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
22 Meoy Numerycze Progrmowe Sro z 53 Wył. Mszyow reprezecj lcz rzeczywsych (8) Zmeopozycyj reprezecj lcz rzeczywsych rych Słowo mszyowe Nr u B B zu e cyfr cechy c cyfr mysy m B c e c e- c e- c c 0 m - m - m - m - Moż Z e e Rysue.7. Reprezecj rej lczy rzeczywsej w zmeopozycyjym zpse mszyowym. Wrość lczy rzeczywsej zpsej w sposó zmeopozycyjy wy z sępującego wzoru: gze: m c B 0 s m, 0 0 m m m m m 0 K, e c 0 0 e ce c c c 0 c K Mrusz B. Bogc Sro z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
23 Meoy Numerycze Progrmowe Sro 3 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (9) Zmeopozycyj reprezecj lcz rzeczywsych rych Lczy rzeczywse o pojeyczej precyzj 3 owe słowo mszyowe Nr u Z Cech Mys B c 8 c 7 c c 0 m - m - m- m- Moż sg Rysue.8. Koowe zmeopozycyjej lczy rzeczywsej o pojeyczej precyzj. 3 y przezczoe mysę orz 8 ów cech. Wrość lczy rzeczywsej zpsej w sposó zmeopozycyjy wy z sępującego wzoru: s m, c - cech c lczą cłową ez zu z zresu [0, 55]; - wył poęgowy olczoy przez przesuęce B 7; - mys pozwl zpse ołe 6 7 cyfr zesęych, - 39 zres lcz rzeczywsych Mrusz B. Bogc Sro 3 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
24 Meoy Numerycze Progrmowe Sro 4 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (0) Zmeopozycyj reprezecj lcz rzeczywsych rych Przył.0. Przeprowzć erprecję zesęą lczy rej zpsej w pojeyczej precyzj: Rozwąze Cech: Mys: c m Rzeczyws wrość lczy wyos: ( ) Bezpośreo mejsz lcz: Bezpośreo węsz o ej lcz: Mrusz B. Bogc Sro 4 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
25 Meoy Numerycze Progrmowe Sro 5 z 53 Wył. Mszyow reprezecj lcz rzeczywsych () Zmeopozycyj reprezecj lcz rzeczywsych rych Lczy rzeczywse o powójej precyzj Perwsze 3 owe słowo mszyowe Nr u Z Cech Mys B c c 0 c c 0 m - m - m -9 m -0 Moż sg Druge 3 owe słowo mszyowe Nr u Mys B m- m- m- 3 m- 3 m- 33 m -34 m -5 m -5 Moż Rysue.9. Koowe zmeopozycyjej lczy rzeczywsej o powójej precyzj. Cech ów, mys 5 y. Mrusz B. Bogc Sro 5 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
26 Meoy Numerycze Progrmowe Sro 6 z 53 Wył. Mszyow reprezecj lcz rzeczywsych () Zmeopozycyj reprezecj lcz rzeczywsych rych Lczy rzeczywse o powójej precyzj Wrość lczy rzeczywsej zpsej w sposó zmeopozycyjy wy z sępującego wzoru: s m, c - cech c lczą cłową ez zu z zresu [0, 047]; - wył poęgowy olczoy przez przesuęce B 03; - mys pozwl zpse ołe 5 7 cyfr zesęych, zres lcz rzeczywsych Mrusz B. Bogc Sro 6 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
27 Meoy Numerycze Progrmowe Sro 7 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (3) Zmeopozycyj reprezecj lcz rzeczywsych rych Prolemy N N N -.00E E E E307 Lczy rzeczywse Rysue.0. Lczy rzeczywse ch zmeopozycyj reprezecj mszyow w powójej precyzj. Mrusz B. Bogc Sro 7 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
28 Meoy Numerycze Progrmowe Sro 8 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (4) Zmeopozycyj reprezecj lcz rzeczywsych rych Prolemy K K K 0 Mrusz B. Bogc Sro 8 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
29 Meoy Numerycze Progrmowe Sro 9 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (5) W j sposó powsje zmeopozycyj reprezecj lcz rzeczywsych? D lcz rzeczyws w ułze zesęym: y 0 ± 0. L L 0, 9, 0 9,,3, K. (.7) Reprezecj mszyow lczy (g. og-po represeo): ( y ) ( sg( y) m 0 ) sg( y) ( m) 0? 0 Dw sposoy:. Urywe ( y ) ~ y ± 0. L 0 (.8). Zorągle 0 0 ( y ) r( y ) ( ) ( 0. L L) L 0, ( 0. L( ) ) L L 0, 0, jesl 0 jesl jesl 0, 5. jesl 4, 4, 5, ( y ) r( y ) ( 0. L 0 ) 0. L 0, L 0, ( 0. L( ) ) 0, 0, jesl 0 jesl jesl 0 jesl 5, 5. 4, 4, (.9) Powsje łą zorągle (g. rou-of error) Mrusz B. Bogc Sro 9 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
30 Meoy Numerycze Progrmowe Sro 30 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (6) Błą zorągle Defcj.. Nech lcz y * ęze przylżeem lczy y. Różcę * δ y y (.0) zywmy łęem ezwzglęym przylże y * lczy y. Noms lorz * δ y y ε, gze y 0 (.) y y zywmy łęem wzglęym. Tel.7. Porówe rzeczywsych łęów ezwzglęych orz wzglęych w wóch sposoch orzymyw pęcocyfrowej reprezecj mszyowej zmeopozycyjej lczy rzeczywsej Uwg: zps E-5 ozcz 0-5. ( ) ( ) r ( ) ~ Reprezecj mszyow Błą ezwzglęy 0.56E E-5 Błą wzglęy.6e E-5 Mrusz B. Bogc Sro 30 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
31 Meoy Numerycze Progrmowe Sro 3 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (7) Błą zorągle (lczy zesęe) W przypu zsosow meoy uryw orzymmy sępujące oszcowe łęu ezwzglęego: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ~ L K K L L L δ (.5) Oszcowe łęu wzglęego: ( ) ( ) ~ L L L L L L L L L L L ε (.8) Mrusz B. Bogc Sro 3 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
32 Meoy Numerycze Progrmowe Sro 3 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (8) Błą zorągle (lczy zesęe) W przypu zsosow meoy zorągle orzymmy sępujące oszcowe łęu ezwzglęego:. Perwsz orzuc cyfr jes mejsz o 4 ( 0 4): δ ( ( ) ) ( ) r( ) L L 0 0 L L (.6). Perwsz orzuc cyfr jes węsz lu rów 5 ( 5): δ ( ( ) ) ( ) r( ) (.7) Oszcowe łęu wzglęego: ( y) 0.5 y r ε (.9) y 0. Mrusz B. Bogc Sro 3 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
33 Meoy Numerycze Progrmowe Sro 33 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (9) Błą zorągle (lczy re) D lcz rzeczyws w ułze rym: sg( ) L L sg( ) 0. (.8) Reprezecj mszyow lczy (g. og-po represeo): ( ) ( sg( ) m ) sg( ) ( m)? 0 Dw sposoy:. Urywe: ( ) ( sg( ) L L ) sg ~ ( ) L sg( ) ( ). 0 (.9) Zorągle: ( ) ( sg( ) L L ) r( ) sg sg ( ) L( ) ( ) ( ). 0 (.30) Mrusz B. Bogc Sro 33 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
34 Meoy Numerycze Progrmowe Sro 34 z 53 Wył. Mszyow reprezecj lcz rzeczywsych (0) Błą zorągle (lczy re) Oszcowe łęu ezwzglęego: ( ) [ ] ( ) ( ) ( ) ( ) r L L L δ (.3) Oszcowe łęu wzglęego: ( ) [ ] ( ) ( ) m sg ε. (.3) gze: jes lczą ów, órych zpmę jes mys lczy orz < m. Mrusz B. Bogc Sro 34 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
35 Meoy Numerycze Progrmowe Sro 35 z 53 Wył. Mszyow reprezecj lcz rzeczywsych () Błą zorągle Defcj.. Reprezecję mszyową owolej lczy (y) porowć możemy jo ołą lczę y zurzoą ewelm łęem wzglęym ε, co zpsujemy: ( y) y( ε ) (.0) Defcj.3. Mówmy, że lcz y * przylż lczę y z ołoścą cyfr zczących (soych), jeżel jes jwęszą eujemą lczą cłową, l órej zchoz sępując relcj: y y y < 5 0 (.) Oszcowe łęu wzglęego zorągle lczy w reprezecj zmeopozycyjej zyw sę czsm wzglęą ołoścą ompuer. ( ) ( ε ), ε. (.33) Poewż mys zpsyw jes cyfrch mówmy częso o rymeyce - cyfrowej. Mrusz B. Bogc Sro 35 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
36 Meoy Numerycze Progrmowe Sro 36 z 53 Wył. Zmeopozycyje zł rymeycze () Wszyse olcze orczoe są łęm: - łęy zorągle, - łęy ych wejścowych (łęy pomrowe), - łęy ocęc. Mrusz B. Bogc Sro 36 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
37 Meoy Numerycze Progrmowe Sro 37 z 53 Wył. Zmeopozycyje zł rymeycze () Błęy ocęc Przył. Olczyć wrość wyrże e l 0.6 orzysjąc z różej lczy człoów rozwęc ej fucj w szereg Tylor. Rozwąze e N K K. N!! 0 Tel.0. Porówe ołośc oszcow rozwęc fucj ep() w szereg Tylor w zleżośc o lczy użyych człoów sumy częścowej. Lcz człoów w sume częścowej Oszcowe ε Mrusz B. Bogc Sro 37 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
38 Meoy Numerycze Progrmowe Sro 38 z 53 Wył. Zmeopozycyje zł rymeycze (3) Błęy ocęc Przył.3. Olczyć sumę rzech lcz 0.48, 0.4 orz c 0. zpsych w ułze wójowym. Złożyć, że: - 5 ów łącze z em zu, - sosujemy urywe zęych ów, - Sumowe wyoć w sposoy: () ()c orz () (c). Doł wrość sumy c Mrusz B. Bogc Sro 38 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
39 Meoy Numerycze Progrmowe Sro 39 z 53 Wył. Zmeopozycyje zł rymeycze (4) Błęy ocęc Przył.3. Rozwąze Kż z sumowych lcz m esończoe rozwęce wójowe: - - ( 0.48 ) ( L ) ( 0.4 ) ( L ) ( 0. ) ( L ) ,,. Chcąc przeprowzć sumowe leży lczy e sprowzć o wspólego wył. Mrusz B. Bogc Sro 39 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
40 Meoy Numerycze Progrmowe Sro 40 z 53 Wył. Zmeopozycyje zł rymeycze (5) Błęy ocęc Przył.3. Rozwąze A (). Olczmy ()c Olczmy : 0 ( ) ( ) 0.00 Olczmy ()c: ( ) ( ) A (). Olczmy (c): Olczmy c: 3 ( ) ( ) 0.00 Olczmy (c): 0 ( ) W zleżośc o olejośc sumow uzyslśmy w róże wy! Doł wrość sumy c W perwszym przypu łą wzglęy wyos 8.%, w rugm jes o mejszy wyos 7.4%. Mrusz B. Bogc Sro 40 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
41 Meoy Numerycze Progrmowe Sro 4 z 53 Wył. Zmeopozycyje zł rymeycze (6) WNIOSEK W rymeyce mszyowej zwyłe prw łączośc orz rozzelośc złń e złją!. Mrusz B. Bogc Sro 4 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
42 Meoy Numerycze Progrmowe Sro 4 z 53 Wył. Zmeopozycyje zł rymeycze (7) Lem Wlso Błęy zorągleń powsjące poczs wyoyw rymeyczych złń zmeopozycyjych są rówowże zsępczemu zurzeu lcz, órych wyoujemy zł. W przypu pojeyczych złń rymeyczych orzymujemy: ( ) ( ρ ) ( ρ ), (.36) ( ) ( ρ 3 ) ( ρ3 ), (.37) ( / ) ( ρ )/ / ( ρ )) 4 ( 5, (.38) gze,,,3,4, 5 są ewęsze, co o moułu o prmeru ε ρ chreryzującego ołość mszyy. J o zł? - Lczy są prwłowo zorągloe o cyfr. - Dzł zosły wyoe ołe (ez łęu). - Dzł wyoe zosły eco zmeoych słch. - Wy zł jes wyem ołym pomożoym przez czy zeszłcjący. Mrusz B. Bogc Sro 4 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
43 Meoy Numerycze Progrmowe Sro 43 z 53 Wył. Zmeopozycyje zł rymeycze (8) Błęy wzglęe poswowych złń: W przypu może lcz: ( ) [ ] ( ) ( ). 5 ε ρ ρ ρ ε (.39) W przypu zele lcz: ( ) [ ] ( ). 5 / / / / ε ρ ε (.40) W przypu ow lcz: ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ε ρ ρ ρ ρ ρ ρ ε. (.4) gze ε 50 - jes ołoścą mszyową. Mrusz B. Bogc Sro 43 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
44 Meoy Numerycze Progrmowe Sro 44 z 53 Wył. Zmeopozycyje zł rymeycze (9) Błęy wzglęe poswowych złń - WNIOSKI. Opercje może zele wprowzją łęy wzglęe e przewyższjące wzglęej ołośc ompuer (rów.39.40).. Dowe lcz o różych zch (lu ch oejmowe) może wprowzć rzo uży łą wzglęy w przypu, gy wrośc ezwzglęe lcz orz są porówywle, czej mówąc, gy jes młą lczą. Wey zgoe z rówem (.4) lorz wysępujący w oszcowu łęu wzglęego może yć rzo uży. W efece prowz o o ury ołośc olczeń. T syucj j ops w puce. sow szczególe uży prolem. Jes o oreśl mem reucj cyfr zczących. Mrusz B. Bogc Sro 44 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
45 Meoy Numerycze Progrmowe Sro 45 z 53 Wył. Zmeopozycyje zł rymeycze (0) Przył.4. W zesęcocyfrowej rymeyce olczyć różcę wóch lcz orz Rozwąze , , ( ) , ( ) Różc ych wóch lcz: ( ) ( ) Błęy wzglęe ch reprezecj mszyowych lcz: δ [ ( ) ] ( ) , δ [ ( ) ] ( ) Są mejsze o łęu mszyowego wyoszącego Błą wzglęy różcy zmeopozycyjej speł erówość: δ [ ( ) ] 0 0 ( ) ( ) > 4 0. Nsąpł umulcj łęów! Mrusz B. Bogc Sro 45 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
46 Meoy Numerycze Progrmowe Sro 46 z 53 Wył. Zmeopozycyje zł rymeycze () Przył.5. Przelzowć w róże lgorymy olcz różcy wrów wóch lcz: ( ) A,, A ( ) ( ) ( ),. Rozwąze Perwszy lgorym: gze ( A (, ) ) ( ) ( ( ε ) ( ε )) ( ε ) ε ε ( ) ( ε ) ( ), ( ) δ ( A ) ε ε δ ( A ) ( ε 3 ) ε 3, ε,,3,. WNIOSEK: Jeżel jes opoweo lse, łęy ε ε mją przecwe z, o łą wzglęy δ wyu orzymego lgorymem A może yć owole uży!. 3 3 Mrusz B. Bogc Sro 46 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
47 Meoy Numerycze Progrmowe Sro 47 z 53 Wył. Zmeopozycyje zł rymeycze () Przył.5. c. Drug lgorym: gze ( A (, ) ) ( ( ) ( ) ) (( ) ( ε ) ( ) ( ε )) ( ) δ ( A ) ( ), ( A ) ε ε 3 δ, ε 3 ( ε ) WNIOSEK: Nezleże o wrośc ezwzglęych lcz łą wzglęy δ jes zwsze sły e węszy o Mrusz B. Bogc Sro 47 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
48 Meoy Numerycze Progrmowe Sro 48 z 53 Wył. Zmeopozycyje zł rymeycze (3) Przył.6. Korzysjąc z lorzu różcowego oszcow wrośc pochoej fucj w puce. ( ) e f Rozwąze Ilorz różcowy: f ( ) f ( h) f ( ) h WNIOSEK: Dl mlejących h orzymujemy corz lepsze przylże pochoej f'(). W cyfrowej rymeyce zmeopozycyjej mmy: ( f () ) f ( h) f ( ) f ( ( h) ) f ( ) h ( f ( ( h) )) ( f ( ) ), h h WNIOSEK: Dl 0 < < h osjemy ołe zero! Mrusz B. Bogc Sro 48 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
49 Meoy Numerycze Progrmowe Sro 49 z 53 Wył. Zmeopozycyje zł rymeycze (4) Przył.6. c. Tel.. Oszcowe wrośc pochoej fucj z pomocą lorzu różcowego z różym roem różczow. ( ) e f h f () ( h) f ( ) f ε h e-3 e e-4 e e-5 e e-6 e e-7 e e-8 e e-9 e e-8 e e-7 e e-6 e e-4 e e-4 Mrusz B. Bogc Sro 49 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
50 Meoy Numerycze Progrmowe Sro 50 z 53 Wył. Uwruowe z () Przył.8. Wyzczyć zer welomu: w 0 ( ) ( ) ( ) L ( ) ( ) K, w órym współczy 9 0 zosł zurzoy o ewel czy zurzjący δ -3, ( ) ( ) 3 o zczy jego wrość wyos: δ 0. 9 Rozwąze Zerm welomu wyjścowego są lczy urle,,, 0. ( ) ( ) 9 3 Nowy welom w w. δ Zgoe z przyjęą owecją ( ε ) ( ε ) ( ) 3 gze ε 0 <. W rozwązu pojwją sę perws zespoloe! Njlższy perwsow 5 welomu w() jes perwse ± Mrusz B. Bogc Sro 50 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
51 Meoy Numerycze Progrmowe Sro 5 z 53 Wył. Uwruowe z () Defcj.4. Jeśl ewele wzglęe zmy ych z powoują uże wzglęe zmy jego rozwąz o ze e zywmy źle uwruowym. Welość chreryzującą wpływ zurzeń ych zurze rozwąz zywmy wsźem uwruow z. Mrusz B. Bogc Sro 5 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
52 Meoy Numerycze Progrmowe Sro 5 z 53 Wył. Uwruowe z (3) Przył.9. Zć uwruowe z olcz wrośc loczyu slrego S 0 Rozwąze Zurzmy e wejścowe (,, K, ) orz (,, K, ) możąc ch współrzęe opoweo przez α orz β,, K,. ( ) Złmy, że α β są yle młe, y ch loczyy αβ I moż yło zeć. Szcujemy wzglęą zmę wyu: ( α ) ( β ) ( α β αβ ) ( α β ) ( α β ) m α β. Mrusz B. Bogc Sro 5 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
53 Meoy Numerycze Progrmowe Sro 53 z 53 Wył. Uwruowe z (4) Przył.9. c. Czy powoujący zwęszee lu zmejszee oszcow łęu: co(, ). Jes o wsź uwruow z, gyż msymle zurzee wzglęe ych może sę przeeść zurzee wzglęe wyu co jwyżej z m możem. W przypu, w órym wszyse sumowe sł yłyy ego smego zu, o co(,), ze e uwżmy z rzo orze uwruowe (mło wrżlwe zurze ych). Noms, jeżel co(,) >>, o ze olcz loczyu slrego uzmy z źle uwruowe. Mrusz B. Bogc Sro 53 z Zł Iżyer Procesowej Wyzł Techolog Chemczej PP
Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.
Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.
MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.
CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej
Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne
r: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe wyłd r różczowe przylżoe cłowe umerycze r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc Perwsz pocod uc dec: ' lm Ozcze:
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Metody obliczeniowe. Semestr II
Metody olczeowe Semestr II Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch. Rozwązywe ułdów rówń lowych. Metody ezpośrede tercye.. Sposoy rozwązyw rówń elowych, zgdee optymlzc.. Aprosymc
Metody numeryczne procedury
Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc
Nadokreślony Układ Równań
Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).
Ramowy program laboratorium z metod numerycznych. Skrócone instrukcje do ćwiczeń laboratoryjnych.
Rmowy progrm lbortorum z meto umeryczyc. Srócoe strucje o ćwczeń lbortoryjyc. erm Nr emty Wprowzee, zsy zlcze, regulm, BHP tp. Ćw. Błęy. czby zmeoprzecowe IEEE 754. Epslo mszyowy Ćw. Rozwązywe ułu rówń
Prawdopodobieństwo warunkowe. Niezależność zdarzeń
RCHUNEK RWDOODOIEŃSTW WYKŁD. rwopoobeństwo wruowe. Nezleżość zrzeń rzył. Rzucmy rz symetryczą sześceą ostą. e zrzee {, 4, 6} - wypł przyst lczb ocze m szsę zjśc rówą 0,5. Zobylśmy formcję, że wypły jwyżej
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
VIII. RÓŻNICZKOWANIE NUMERYCZNE
VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe
Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.
Szeregi trygonometryczne Fouriera. sin(
Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś
Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie
odswy pryczych decyzji eooiczo- fisowych w przedsiębiorswie l wyłdu - Wrość pieiądz w czsie 4 h - Efeywość projeów w iwesycyjych 3-4 h -Wżoy osz piłu u WACC h odswy pryczych decyzji eooiczo- fisowych w
5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy
5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja
R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.
WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),
Ocena wpływu niepewności estymacji parametrów modeli czujników pomiarowych na wartości maksymalnych błędów dynamicznych
Polech rows Wydzł Iżyer Elerycze operowe edr oy ech Iforcyych Oce wpływ epewośc esyc prerów odel czów porowych wrośc sylych łędów dyczych Dr ż. rzyszof oczy rów 5.3.5 Pl wysąpe. Błędy w porch welośc słych
Metody numeryczne w przykładach
Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:
Zastosowania matematyki w chemii. Marek Kręglewski
Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =.
Obwody SLS prąd orsowgo SLS PO Obwody SLS prąd orsowgo o obwody SLS prcjąc w s soy przy pobdzch orsowych. Obwody zywy obwod prąd orsowgo OPO b obwod prąd odszłcogo OPO od sygł ssodgo. Mody posępow z OPO:
RÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
CONNECT, STARTUP, PROMOTE YOUR IDEA
Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w
Ć Ę Ę ż ŁĄ
Ó Ń Ń Ń Ą Ę Ź ŚĘ Ś Ć Ę Ę ż ŁĄ ż Ą Ś Ą Ś ź ż ź Ś Ę Ę ź Ą Ę ż Ą ż ż ż Ą Ś ż ż ż ć ż ż ć ż ż ć ć ż ż Ą ż ż ż Ę Ę Ę ż Ś ż Ą Ę Ź Ą ż Ą Ę ż ż Ś ż ż ż ż Ł Ę ć ż Ś ż ż ż ż ż Ś Ę ż ż Ę Ę ż Ę ć ż ż ż Ś ż ż ć ż Ę
Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa
Egzm dl Akturuszy z 5 mrc 0 r. Mtmtyk Fsow Zd Krok : Ay koc roku yło co jmj ml K mus spłć rówość: 000000 50 000 K 50 000 000000 K Krok : Lczymy st kot koc roku zkłdjąc, Ŝ koc roku mmy ml 000000 50 5000
METODY NUMERYCZNE. Wykład 6. Plan Rozwiązywanie układów równań liniowych
-4-4 METODY NUMERYCZNE Wykłd 6. Rozwązywe ukłdów rówń lowych dr h. ż. Ktrzy Zkrzewsk, prof. AGH Met.Numer. wykłd 6 Pl Metody dokłde Metod elmcj Guss Metod Guss-Sedl Rozkłd LU Metod Kryłow Metod LR QR Zdefowe
określony za pomocą funkcji: gdzie: N - zbiór liczb naturalnych.
eo Ls łńuhowyh Zkłe kroek wyszukwwzej: Zkłmy ż zy jes sysem wyszukw S wę zbór obeków X rybuów A wroś yh rybuów V orz fukj formj : X A V. Obeky opse są lozyem opoweh ezprzezoyh eskryporów. Są oe pmęe w
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Zastosowania matematyki w chemii. Marek Kręglewski
Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.
ODPORNY UKŁAD REGULACJI PRĘDKOŚCI NADAWANIA DANYCH W SIECI TELEINFORMATYCZNEJ O WIELU ŹRÓDŁACH
rzej Uryszek rzej roszewcz Polechk Łózk, Isyu uomyk ul Sefowskego 8/22, 9-924 Łóź e-ml: uryszek@plozpl, pbr@plozpl 25 Pozńske Wrszy Telekomukcyje Pozń 8-9 gru 25 ODPORNY UKŁD REGULCJI PRĘDKOŚCI NDWNI DNYCH
Sytuacja regionalna w zakresie zagrożeń uzależnieniami. Perspektywa lokalna.
1-7- Syuj rgol w zr zgrożń uzlżm. Prpyw lol. Słwomr P. Prz Używ loholu Młozż Choż rz w ągu łgo wojgo ży lohol pło 9,1% uzów z młozj grupy 96,% uzów z rzj grupy. W z oh prz bm pło 61,% 1 16- lów orz 4,%
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Aproksymacja funkcji
Aprosymcj fcj. Ogóle sformłowe zgde prosymcj jedowymrowej Sformłowe zgde prosymcj D - prosymcj cągł: zleźć fcję p( x ) prosymjącą (zstępjącą, przylżjącą) dą fcję cągłą ( ) f x w przedzle [ ] p( x ) powy
ź ć
Ę Ą Ą Ł Ł Ą ź ć ć Ę Ź Ź Ź Ą Ę Ń Ł Ą Ć ŁĄ ŁĄ Ł Ę Ę Ć ć Ź Ź Ć Ć ć ć ć Ź ć ć ć Ź Ź Ć Ć Ź Ć Ą ć ć Ź ć Ć Ź Ć Ź Ź ć Ć Ć Ź Ł Ć Ź ć Ć Ć ć Ź ć Ę ć Ć Ć Ć Ć Ź Ć Ć Ź ć Ć Ć ć Ć Ł ć Ć Ć ć Ć Ć Ź ć ć Ć ć ć Ć Ą Ń ź Ć Ć
Ł ś Ń Ż Ó Ń Ż Ń Ł Ł
Ł Ł Ł Ń Ń Ó Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ó Ś Ś ś ść ś ć ć ć ś ś ś ś ś Ń ś ś ś ś ś ć ć źć ś ć ś ć ś ść ś ś ś Ł ś ś Ł ć Ł ś ć ć ć ś ś ćł ź ść ść ć ść ś ś ć Ż ś ś ś ć ś ć ć źć ź Ń ś ś Ł Ń ć ś ść Ł źć ś ś ć ćń ć
Rozszerzenie znaczenia symbolu całki Riemanna
Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
Ad. poszczegolne metody obliczeniowe
A. poszczegole etoy olczeowe. Oów włsośc uerycze reprezetc lcz rzeczywstych rytety zeoprzecowe orz przestw powy yć uwzglęe w oprcowywu lgorytów ueryczych. F-zór lcz zeoprzecowych -postw t-ołość L,U-zres
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
ź ź ŁĄ ź Ę Ę Ę Ę ź ź Ę Ę Ł ź
Ł Ę Ę Ć ź ź ŁĄ ź Ę Ę Ę Ę ź ź Ę Ę Ł ź ź ź ź ź Ę Ę Ł Ń Ł ź Ź ź ź ź Ą ź ź Ę Ę Ł Ę ź Ę Ę Ł Ę ź Ę Ą ź ź ź Ć ź ź Ę ź Ę ź Ę Ą Ę Ę Ę Ą ź Ą Ę Ę Ł ź Ć ź ź Ć ź Ę Ę Ł ź Ć ź Ą Ł Ć Ć Ę Ę Ę Ć Ł Ń ź ź Ę Ę Ł Ż ź Ć Ć Ż
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM
ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3
To sprwdzi ośości ści ociążoyc pioowo wg eody uproszczoej zgodie z P- 996- UWAGA: ośość ści eży sprwdzć żdej odygcji, cy że gruość ści i wyrzyłość uru ścisie są ie se wszysic odygcjc..... 5. De: rodzje
Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych
Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir
PRZEPŁYWY MIĘDZYGAŁĘZIOWE. tablica przepływów międzygałęziowych
PRZEPŁYWY IĘDZYGŁĘZIOWE. [] Jeą z meto lzy zleŝośc wystęuących w rocesch tworze ozłu roukc mterle są metoy rzeływów męzygłezowych (lzy kłów wyków, lzy utoutut). zł Elemetrym osem ukłu est tut tzw. tlc
Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Metody obliczeniowe. wykład nr 4. róŝniczkowanie przybliŝone całkowanie numeryczne
Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Metody olczeowe wykłd r 4 róŝczkowe przylŝoe cłkowe umerycze Nr: Metody olczeowe - Budowctwo semestr - wykłd r 4 Perwsz pochod ukc Ozcze: - ukc określo
Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n
lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.
Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak
Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest
( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
Pochodne cząstkowe wyższych rzędów
Auo Robo Alz Wł 7 r A Ćl cl@ghul Pocho cząsow wższch rzęów Nch uc : R D R D owr os ochoą cząsową w ż uc D Js węc orślo uc : R D Jżl owższ uc ochoą cząsową o - z w uc o zw ą rugą ochoą cząsową uc o zch
Ż Ś Ń Ą Ą ć
Ż Ś Ń Ą Ą ć Ń ź Ż Ń Ą Ń Ń ć Ń ć ź Ń ć ć ć Ł Ń Ń ć ć Ą Ą ć ć Ń ź Ą ć ć ć ć ć ć ć ć Ż źć ć ć Ą ć ć ć ź Ą ć ź ź ź ź Ź ć ć Ż ć Ą ć ź Ą Ą ź Ń ź ź ź Ś ź Ż Ń ć ź Ń Ł ć ć ć ć ć Ą Ń Ń ć Ń źć Ż Ń ć ć Ą ć ć Ń ć Ń
Metody Numeryczne 2017/2018
Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj 8 8 8 - - - - 3 8 8 6 8 roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.
Ę Ę Ę Ą ź Ę ń Ę ć ć ń ć ć ń Ą Ę ć ń źć ń ć ź ń ć ć Ę ć ć ć ć ń Ś ć ć Ć ć ć Ć ń ć ć Ć Ć Ś Ś ć Ś Ż ć ń ć Ć ń ć ń ć źć ć ć ć ń Ć ć Ć ń ń ń ń ń ń ć ź ć ń ć ć ć ć ć ć ń ź ń ć ń ź ć ć ć Ć ć ć ć ź ć Ć ć ć ć ć
Ą ź Ą ń ź Ł Ł ń Ł ń ń ź ń Ł Ś Ą Ń ń ŁĄ Ś ń ń ń ń ń ń Ł Ą ń ń ń ń Ą Ą Ś ń Ó Ł ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń Ł ń Ą ŁĄ Ś Ł Ś Ł ń ń ń ń Ń Ą ć ń ń Ł Ń ń Ł Ł ń Ł ń ń ń ń ń ń Ź Ł ń ń Ź Ł ń ń Ł
ż ć ć ć ż ń ć ż ć ż Ę ć ż
Ł Ł ŁĄ Ł ż ż ź ż Ą ż ć ć ć ż ń ć ż ć ż Ę ć ż ń ń ż ć ć ż ć ć Ź ż ń ń ć Ę ż Ą Ę ż ń ć Ą Ą ż Ź ż ć ć ż ć ć ż ż ż ć ń ż ć ż ż ż Ę ć Ę Ł Ł ź ń Ź Ę ż ć Ą ń ć ż ź ż Ą Ź ń ż Ź Ą Ą ż ć ż ć ć Ą ż ć ć ż Ł ż ć ż
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń
I. APROKSYMACJA I INTERPOLACJA FUNKCJI JEDNEJ ZMIENNEJ
Oprcowł: mgr Słwomr Mlewsk Smodzely Zkłd Metod Komputerowych w Mechce L6, WL, PK APROKSYMACJA NTERPOLACJA FUNKCJ JEDNEJ ZMENNEJ Ogóle zgdee proksymcj moż opsć stępująco: De są pukty leżące ądź to do wykresu
Ł ć Ą ć ć ć ć ć Ł
Ł Ś Ą Ś Ą Ł Ś Ś Ł Ł Ó Ą Ł ŚĆ Ń Ó Ł ć Ą ć ć ć ć ć Ł Ó Ł Ń Ś Ó ć Ś Ó Ń ŁĄ Ł Ó Ó Ł Ń Ś Ś Ó Ó Ó Ł Ń Ó Ł ć ć Ó Ó Ó Ł ć ż ż ć ć ż ż Ź ż ć ć ć Ó Ó Ó Ł Ń Ł Ó Ó Ó Ł ć ż ż ż ć ż ć ż Ł Ó Ó Ó Ł ż ż ć ć ć ć ć ć Ó Ż
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
LABORATORIUM DYNAMIKI MASZYN
LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,
ŁĄ Ę ę ę Ę ę ę ę ę ę ŁĄ ę Ą ę ę
ŁĄ Ą ÓŁ Ą Ą ŁĘ ÓŁ ŁĄ Ę ę ę Ę ę ę ę ę ę ŁĄ ę Ą ę ę ć ę ę ę ę ę ę ę Ę ę ę ę ę ę ę ę ę ęć ę ęć ę ę ę ę ęć ę ę ę ę ć ę ę ć ć Ę ć Ę ę ć ę ę ę ę ę Ą ę ę ę Ę Ą ęć ę ęć ę Ę ęć ę ęć ę ę ę ęć ę ęć ę ę ę ęć ć Ę ę
Ś Ś Ą Ó ć ć Ą ŁÓ Ó Ń ć ć Ż Ó ć ź Ę ć Ę ć ć ć Ę ć ć ć ć ć ć ć ć ć ć Ó Ą Ą Ę ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ćę ć Ę ć ć Ś ć ć ć ć Ę ć Ę ć ć ŚĘ Ł Ń Ń Ś Ą ć ć ź ć Ę Ć Ę ć Ę ć ć Ę Ę ć ć ć Ą ć ć Ę ć ć
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = =
Pomr jego dokłdość. Kżdy pomr dje m wyk z pewą ylko dokłdoścą, węc obcążoy je epewoścą pomrową (błędem pomrowym). Pomry fzycze dzelmy : bezpośrede pośrede. Pomrm bezpośredm zywmy ke, kórych wrość lczbową
kwartalna sprzeda elazek
Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch 996-999 wosł: 4 5 6 7 8 9 4 45 5 57 6 64 68 65 68 67 69 7 7 7 75 Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec
R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )
Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych
WYKŁAD nr Wielomian M (s) ma pierwiastki wielokrotne oraz równe zero
WKŁD nr. Welomn m perwt welorotne orz równe zero J zznczono poprzeno ążąc o uogólnen wzorów umożlwjących przetwene opowez elementów utomty opnego owolną trnmtncją przy owolnym ygnle wymuzjącym wprowzono
Odpływ ścienny Scada. Kreatywne odwadnianie łazienki. www.kessel.pl
Oływ śy S Kyw w łz www.. 2 S Oływ śy S T Gó węź ły Wyść zuwy łz Oyy zy wyywu ów Oływ śy S zu uwą zuwą. Dzę w wyś zuwy (y 80 ó węz ły) ę ż w ąy. 115-165 H2 H1 15 362 H3 Py wyów Pły uw óż żw zwą wą zuwę
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
Ę ć Ń Ń ŁĄ ć ć ć Ę ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ź Ł Ś ć ć ć ć Ę ć ć ć ź ć Ę Ńć ć ć ź Ę Ę ć Ę ć Ę ć Ę ć ć ć ć ć Ę ć ć Ę ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ź ć
ż ż ż ż ż ż Ś Ł Ę ż ż ż ż ż ż Ź ż Ę ż ż ć ż Ś Ś ć Ź Ę ż ż Ł Ś Ś ć Ś Ś ć ć Ś Ść ż Ś Ś ć Ś Ść Ś Ść ć Ł Ź Ś Ś ć Ś ż Ść Ś Ś Ś Ś ć Ś Ś Ź ć Ę Ś ć Ę Ć Ś Ę Ń ć ż ź ź Ę ż ż Ść ć Ę ć ż ź ż ż ż Ść ż Ś ć ć ć Ł ć ż
Ł Ą Ń
Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą
takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie