Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne
Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje): ' ( ) d d ( ) ( ) ( ) lim y () Pochodn unkcji jest równ tngensowi kąt nchyleni stycznej w punkcie do osi. α Wyzncznie pochodnej jest nzywne różniczkowniem.
Pochodn unkcji Pochodn jest tkże unkcją zmiennej. Możn wyznczć jej pochodną, czyli drugą pochodną unkcji (). W ten sposób otrzymuje się pochodne wyższych rzędów. "... ' ( ) ( ) ( ) d d d d ( '( ) ) 3
Techniczne zstosowni pochodnej Wyzncznie prędkości chwilowej jko przyrostu drogi w krótkim czsie i przyspieszeni jko przyrostu prędkości Estymcj wzmocnieni ukłdu elektronicznego w punkcie prcy Szcownie wrżliwości ukłdu n zmienność dnej wielkości wejściowej Wyzncznie grdientu unkcji wielowymirowej w optymlizcji Wiele innych 4
Wyzncznie pochodnej unkcji Istnieje szereg unkcji, dl których znne są nlityczne wzory n pochodne, np.: ( ) '( ) n n ( ) '( ) n ( ) sin( ) '( ) cos( ) ( ) e '( ) e ie zwsze istnieje nlityczny wzór n pochodną lbo jego wyznczenie jest trudne. 5
umeryczne wyzncznie pochodnej Zgodnie z deinicją pochodnej: ' ( ) d d ( ) ( ) ( ) lim y () możn jej wrtość w punkcie wyznczyć numerycznie w sposób przybliżony jko: ˆ' ( ) ( ) ( ) Teoretycznie przybliżenie powinno być tym dokłdniejsze, im mniejsz różnic -,, jednk z powodu błędów numerycznych lbo zkłóconych wrtości unkcji tego przedziłu nie możn dowolnie zmniejszć. 6
umeryczne wyzncznie pochodnej z próbek Jeżeli dne są wrtości unkcji w punktch: < <... < to jej przybliżoną pochodną wewnątrz przedziłu <, > możn wyznczyć jko pochodną wielominu interpolcyjnego P(). y () ( ) ˆ' dp( ) d Zstosown technik interpolcji zleży od tego, jk są rozmieszczone węzły interpolcji (czy są równoodległe). 7
8 umeryczne wyzncznie pochodnej dowolne rozmieszczenie węzłów Dne są wrtości unkcji w punktch: ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ), '...... k k j j j d dp P Zstosownie wielominu interpolcyjnego ewton: < < <... Możliwe jest wyznczenie pochodnej dl dowolnego wewnątrz przedziłu <, > Zstosownie klsycznej postci wielominu interpolcyjnego: ( ) ( ) ( ) ( )... '... d dp P
umeryczne wyzncznie pochodnej węzły równoodległe Dne są wrtości unkcji w 3 punktch: h < < h Ilorz różnicowy wprzód: '( ) Ilorz różnicowy wstecz: '( ) Ilorz różnicowy centrlny: ( ) ( h) ( ) h ( ) ( h) h ( h) ( h) ' h 9
Przykłd wyznczni pochodnej Wyznczenie zstępczej rezystncji wewnętrznej kumultor. u E ir R u Zwrcie zcisków kumultor w celu pomierzeni prądu byłoby niszczące. E i zw R A u E ir R du di E V P R u ( i h) u( i h) h
umeryczne wyzncznie pochodnej zkłócone dne pomirowe Dopsownie prostej do dnych pomirowych w pobliżu techniką regresją liniowej dje oszcownie pochodnej jko współczynnik kierunkowego prostej yb: y yb y ( )
Cłk unkcji Cłk nieoznczon jest unkcją pierwotną F(), unkcji (), tkiej, że: ( ) F' ( ) Wyznczenie cłki jest możliwe z dokłdnością do stłej C (pochodn stłej jest równ zero): F ( ) C ( ) d Przykłd: Krzywe n rysunku są przykłdowymi cłkmi pol kierunków unkcji wielominowej. Źródło: http://pl.wikipedi.org
Cłk oznczon Riemnn Cłk w przedzile domkniętym <,b> (cłk Riemnn) unkcji dodtniej () jest polem powierzchni pod wykresem tej unkcji: S b ( ) d Cłk jest grniczną wrtością sumy pól prostokątów zbudownych pod wykresem unkcji przy ich liczbie dążącej do nieskończoności. Źródło: http://pl.wikipedi.org -> 3
Techniczne zstosowni cłki Wyzncznie wrtości skutecznej prądu i npięci Pomir zużyci energii (liczniki energii) Oblicznie pól powierzchni o różnorodnych ksztłtch Oblicznie objętości i msy brył Szcownie prwdopodobieństw n podstwie unkcji jego gęstości Wyzncznie toru lotu, zsięgu pocisków itd. Wiele innych 4
Anlityczne wyzncznie cłki oznczonej unkcji () Tw. ewton-leibniz: Cłk oznczon unkcji (), ciągłej w przedzile <,b> jest różnicą wrtości unkcji pierwotnej n krńcch przedziłu cłkowni: Istnieje szereg unkcji, dl których znn jest nlityczn postć unkcji pierwotnej: b ( ) d F( b) F( ) ( ) F( ) n ( ) F( ) ( ) sin( ) F( ) cos( ) n n ie zwsze istnieje nlityczny wzór n unkcję pierwotną lbo jego wyznczenie jest trudne. 5
umeryczne wyzncznie cłki Metod prostokątów: b h ( ) d h ih i h b Metod trpezów: b h ( ) d [ ( ( i ) h) ( ih) ] b h i Źródło: http://pl.wikipedi.org 6
Kwdrtury ewton-cotes Przybliżenie cłki unkcją pierwotną wielominu interpolcyjnego dl równoodległych węzłów (odl. h) w przedziłch <, n > Źródło: http://pl.wikipedi.org Wzór trpezów: h ( ) d [ ( ) ( )] Wzór Simpson: 3 h 3 ( ) d [ ( ) 4 ( ) ( )] 3 Reguł 3/8: 4... 3h 8 ( ) d [ ( ) 3 ( ) 3 ( ) ( )] 3 4 7
Cłkownie w wielu wymirch Cłkownie w wielu wymirch możn, dzięki włściwości liniowości cłki, podzielić n kolejne wykonywnie cłkowni w kżdym wymirze oddzielnie. d d (, y) ddy F( y) dy, F( y) (, y const) c b c b d Cłkownie w kżdym wymirze relizuje się przedstwionymi wyżej technikmi. 8
Przykłdy zstosowń cłkowni numerycznego Wyzncznie pól powierzchni i objętości skomplikownych ksztłtów Źródło: http://pl.wikipedi.org 9