Całkowanie metodą Monte Carlo

Wielkość: px
Rozpocząć pokaz od strony:

Download "Całkowanie metodą Monte Carlo"

Transkrypt

1 Cłkownie metodą Monte Crlo Pln wykłdu:. Podstwow metod Monte Crlo. Metody MC o zwiększonej efektywności ) losowni wżonego b) zmiennej kontrolnej c) losowni wrstwowego d) obniżni krotności cłki

2 Przypomnienie widomości ze sttystyki: i) funkcj gęstości prwodpodobieństw ii) wrtość oczekiwn iii) wrincj (odchylenie stndrdowe) Przykłd. Rozkłd normlny (Guss) fgp: µ ( ¹) f () p ep ¾ ¾ ¼ Funkcj gęstości prwdopodobieństw (fgp) t m nstępujące włsności ^ [;b] b f () f ()d Przy jej pomocy możn określić prwdopodobieństwo zdrzeni że zmienn przyjmie wrtość pomiędzy +d: P f i + dg f ()d Dl dnej funkcji gęstości prwdopodobieństw możn określić dystrybuntę rozkłdu F () f ( )d któr jest funkcją prwostronnie ciągłą i niemlejącą. b P f g f ()d F ( ) F ( ) dystrybunt: F () µ + erf µ ¹ p ¾

3 - wrtość oczekiwn zmiennej losowej hi E() ¹() b f ()d - wrincj zmiennej losowej ¾ () h[ hi] i b [ hi] f ()d b + hi + hi f ()d hi hi b zg(z)dz b g(z)dz f ()d f ()d f ()d ¾ () h i hi p ¾() h i hi zwyczj g(z) jest nieznn. Możn jendk skorzystć z prw przenoszeni prwdopodobieństw f ()d - odchylenie stndrdowe zwyczj chcemy określić wrtość oczekiwną zmiennej losowej z będącej funkcją np. innej zmiennej losowej, czyli zz(): hzi ¹(z) b Wrtość oczekiwn µ orz odchylenie stndrdowe σ są prmetrmi funkcji gęstości prwdopodobieństw f(). i powyższą cłkę przeksztłcić do postci hzi ¹(z) zg(z)dz A wrincję b ¾ (z) hz i hzi i odchylenie stndrdowe p ¾(z) hz i hzi liczymy w znny już sposób. z()f ()d

4 Jeśli ciąg liczb fi g fi jn ; ; : : : ; g stnowią zmienne losowe o funkcji gęstości prwdopodobieństw f() to estymtorem wrtości oczekiwnej µ(z) zmiennej losowej z(i) jest średni z próbki z¹ z(i ) i ¾ (z) (zi z¹) i µ µ zi zi i i Mirą rozrzutu zmiennych losowych zi wokół wrtości średniej jest odchylenie stndrdowe p ¾ ¾ (z) ¹ też jest zmienną losową, poniewż konstruujemy ją Ale z ze zmiennych zi (kżd z nich m identyczną wrincję). z wrincją ¾ (z) [z(i ) z¹] i Uwg: (-) w minowniku wynik z fktu że średnią wyliczmy z wrtości z(i) znjąc jej wrtość możemy wyliczyć dowolną z(i) dysponując - pozostłymi wrtościmi. Liczb stopni swobody zmniejsz się o. W prktyce, dl dużych jedynkę możn pominąć. Jkie jest odchylenie stndrdowe średniej? ¾ (¹ z) ¾ Ã i zi! ¾ (z) ¾ (z) i Do jego estymcji możemy użyć (z) ¾(z) ¾(¹ z) p

5 Podstwow metod Monte Crlo Interesuje ns wyznczenie ( rczej estymcj) wrtości oczekiwnej zmiennej losowej ) z z( Przy tkich złożenich, zgodnie z CTG 8 < j¹ z hzij lim P :! któr jest funkcją wektor zmiennych (losowych): [ ; ; : : : ; m ] Rozkłd prwdopodobieństw zmiennej losowej z opisuje funkcj gęstości g(z) ))dz g(z( )d f ( metodę Monte Crlo szcowni wrtości cłek w wersji podstwowej definiują wzory: ) wrtość cłki I rozkłd prwdopodobieństw wektor opisuje funkcj gęstości f() ¾(z) p 9 u p e du ; ¼ )f ( )d ¼ ) z( z( i Uwg: jest wektorem, którego skłdowe są niezleżnymi zmiennymi losowymi o określonych funkcjch gęstości prwdopodobieństw hzi zg(z)dz b) błąd oszcowni )f ( )d z( ¾(I) ¼ s ¾(z) p )d (z hzi) f ( 5

6 zwyczj obszrem cłkowni jest określony podzbiór przestrzeni RM. W tkim przypdku obliczną cłkę trzeb zpisć w nieco zmienionej postci: I )f ( )d z( gdzie: Przykłd Wyznczyć pole powierzchni obiektu o nieregulrnym ksztłcie. )z( )f ( )d ( ) ( jest funkcją przynleżności do zbioru ( ) ½ ½ dl dl Kwdrtur Monte Crlo (metod orzeł-reszk) I )d )z( )d ¼ )z( ) z( ( ( i Uwgi: ) w powyższym przypdku zkłdmy, że funkcj gęstości prwdopodobieństw jest stł w obszrze Ω b) wydjność metody zleży od stosunku wielkości obszru i obszru Ω. S dr dr n S i 6

7 Przykłd I leży obliczyć numerycznie wrtość cłki d d d3 d4 ) metod trpezów d5 g( ; ; 3 ; 4 ; 5 ) g " f (y ) + f (yn ) f (y)dy h + Itrp h5 n wi i h n n j wj n wk k wi;j;k;l;m ½ n f (yi ) i n l # wl n m p y yn wm g(i ; j ; k ; l ; m ) i; j; k; l; m ; n i; j; k; l; m ; ; : : : ; n b) kwdrtur Monte Crlo IM C gdzie: 5 ) g( i - objętość obszru obliczeniowego [ ; ; 3 ; 4 ; 5 ] jest wektorem, którego skłdowe są zmiennymi losowymi 7

8 Rys. Wykres błędu oszcowni wrtości cłki w zleżności od liczby węzłów (trpezy)/losowń (MC). C wrtość dokłdn cłki I wrtość cłki wyznczon numerycznie 8

9 Tłumienie jest relizcją zmiennej losowej: Przykłd Dzielnik npięci powinien zpewnić tłumienie o wrtości.5 z dokłdnością %. Opory r i r mją rozrzuty produkcyjne które możn reprezentowć z pomocą niezleżnych zmiennych r r o funkcjch gęstości prwdopodobieństw fr (r ) fr (r ) Wyznczyć estymtę uzysku produkcyjnego, czyli średniego odsetk ukłdów sprwnych. Rozkłd tej zmiennej opisuje fgp: zleżn od fr (r ) r r + r fk (k) fr (r ) Wrunkiem sprwności ukłdu (jednej z wielu relizownych możliwości) jest : k [:49; :5] Tłumienie npięciowe dzielnik: k r r + r k Wykorzystujemy metodę MC do estymcji wrtości oczekiwnej: (k)fk (k)dk k jest funkcją wektor losowego: r [r ; r ]T 9

10 dltego uzysk produkcyjny możn wyrzić wzorem n średnią wrtość funkcji przynleżności: (k(rr ))fr (rr )dr R Algorytm wyznczeni uzysku: ) Wylosuj prę liczb: r i r, zwiększ o ) Jeśli obliczone k mieści się w obszrze wówczs zwiększ s o 3) Uzysk oblicz jko wrtość ułmk gdzie: fr fr (r )fr (r ) s Przykłd. jest iloczynem ze względu n niezleżność zmiennych losowych r i r. Estymtę uzysku możn obliczć jko średnią rytmetyczną ^ (k(rr n )) n gdzie: r ; r r 3 ; : : : są niezleżnymi relizcjimi wektor losowego r Wyznczyć minimlną liczbę próbek wystrczjącą do wyznczeni estymty uzysku z trzysigmowym błędem względnym: ± 3¾ ^ ^ Dl ±.%,%,%. Obliczmy wrincję estymtor: µ ¾ ^ (k(rr n )) ( ) n µ (k(rr n )) n ^( ^)

11 Błąd względny: s ±3 Metody zwiększni efektywności metody Monte Crlo ^ ( )^ Przeksztłcjąc go możn otrzymć wyrżenie n minimlną liczbę próbek potrzebną do uzyskni wymgnej dokłdności: µ ^ 3 ^ ± I )f ( )d G( )G( )f ( )d ( RM Dokłdność wyznczeni cłki metodą MC zleży od liczeby próbek orz wrincji zmiennej losowej: )G( ) z ( Wydjność metody możn zwiększyć ustljąc i dokonując tkiej trnsformcji funkcji podcłkowej by now zmienn losow (funkcj) mił mniejszą wrincję. Rys. leżność minimlnej liczby próbek od złożnego uzysku

12 ) Metod losowni wżonego kłdmy że dl ) g ( jest fgp dodtnio określoną ¾ ½ ) f ( ) )d I E(z) G( g ( g ( ) )f g y G( Cłkę estymujemy: n ) I y( n jmniejszą wrtość wrincj osiąg dl: ) R g ( jg( )jf ( ) jg( )jf ( )d Jeżeli G() jest funkcją nieujemną, wówczs minimln wrincj estymtor wżonego jest równ. leżłoby jednk w tkim przypdku znć wrtość cłki w minowniku. zwyczj nie jest to możliwe, dltego funkcję G() zstępuje się inną G(), której cłk może być łtwo obliczon. Minimlizcj wrincji w tkim przypdku zleży od jkości zstosownego przybliżeni. mienn losow z m tką smą wrtość oczekiwną jk zmienn losow y orz wrincję zleżną od fgp: ) g ( Wrincję etsymtor cłki możn zmniejszyć odpowiednio dobierjąc fgp.

13 b) Metod zmiennej kontrolnej. Ik Metod poleg n dekompozycji cłki: I Gdzie: h i ^ ^ )f d + ) G( ) f d G( G( )f ( )d G( k )f ¹(k )d ¹(k ) G( k ^ ) G( ¹(k ) )d f ( k jest proksymcją funkcji G() umożliwijącą łtwe obliczenie pierwszego wyrzu po prwej stronie (nlitycznie lub numerycznie). Wrincj zmiennej losowej ^ ) ) G( y G( gdzie: k,,3,...,k Cłki Ik możn obliczć z pomocą podstwowej wersji metody MC m zncznie mniejszą wrincję niż G(). k ¹( ) k (k) (k) I^k k ( n )G( n ) k n c) Losownie wrstwowe W metodzie tej obszr cłkowni dzieli się n K rozłącznych podobszrów: ; ; : : : ; k Cłkę I oblicz się jko sumę cłek w podobszrch. Próbki (k) f n jn ; ; : : : ; k g są relizcjmi wektor losowego o fgp ) f ;k ( ) k f ( ¹(k ) 3

14 d) Metod obniżni krotności cłki Obniżeni krotności cłki możn dokonć gdy jest możliw dekompozycj wektor oryginlnych zmiennych losowych: ut v T ] T [u orz obszru u v że zchodzi u u v v I u ½ v ¾ (u u; v ))fv (vv )dvv fu (u u)du u G( mienn losow z Metod MC wymg zstosowni genertor liczb pseudolosowych o zdnym rozkłdzie gęstości prwdopodobieństw. Genertory ( rczej ciągi generownych liczb) muszą spełnić określone wrunki (korelcj, okres, fgp itp.). stosowni metody Monte Crlo ) fu (u u )fv (vv ) f ( m zzwyczj mniejszą wrincję niż G() co pozwl dość łtwo obliczyć cłkę zewnętrzną. Metod jest skuteczn jeśli potrfimy dość dokłdnie i szybko obliczyć cłkę wewnętrzną (nlitycznie lub numerycznie). (u u; v ))fv (vv )dvv G( v ) sumulcj komputerow probbilistycznego modelu mtemtycznego/fizycznego (kwntow dyfuzyjn metod MC). b) Oblicznie wrtości cłek wielokrotnych (oblicznie objętości, momentów bezwłdności itp. obiektów o nieregulrnym ksztłcie) c) Optymlizcj (minimlizcj czsu oczekiwni pcjent w kolejce do lekrz) d) Rozwiązywnie równń różniczkowych (rów. Poisson metodą błądzeni przypdkowego ze stłym lub zmiennym krokiem) 4

15 Przykłd. Wrunek początkowy ( ; ); t> u(; t ) u () Jeśli jko wrunek początkowy zdmy deltę Dirc u (; t ) ±( ) to dlszą ewolucję u(,t) opisuje formuł µ ( ) u(; t) p ep 4Dt 4¼Dt łóżmy terz że u(,t) m opisywć zbiór cząstek, które dl t były skupione w niewielkim obszrze, dl t> dyfundują w prwo i w lewo. Rozkłd gęstości w chwili t t µ u( ; t) p ep ; 4Dt 4¼Dt możn wygenerowć stochstycznie przesuwjąc kżdą cząstkę o, przy czym otrzymujemy z rozkłdu normlnego (np. genertor Bo-Muller): p (; ) D t W kolejnych chwilch czsowych t i i t opercję powtrzmy dl kżdej cząstki. 5

16 Rozkłd wędrowców (dyfuzj skłdnik) w wybrnych chwilch czsowych 6

17 Przykłd. Oblicznie momentu bezwłdności kuli Obszr kuli: def. momentu bezwłdności: ( ) + (y y ) + (z z ) R I ½ dm M I Wrincj: (~ ½ ½ ~ ) d s I (~ ½i ½ ~ ) µ i i " ¾I s (~ ½i ½ ~ ) µi i Ã! 3 s (~ ½i ½ ~ ) µi 5 i 7

Całkowanie metodą Monte Carlo

Całkowanie metodą Monte Carlo Cłkownie metodą Monte Crlo Pln wykłdu: 1. Podstwow metod Monte Crlo 2. Metody MC o zwiększonej efektywności ) losowni wżonego b) zmiennej kontrolnej c) losowni wrstwowego d) obniżni krotności cłki Przypomnienie

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1) Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

Całkowanie metodą Monte Carlo

Całkowanie metodą Monte Carlo Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności

Bardziej szczegółowo

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2 Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

3. F jest lewostronnie ciągła

3. F jest lewostronnie ciągła Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Cłkownie numeryczne przy użyciu kwdrtur Pln wykłdu: 1. Kwdrtury Newton-Cotes ) wzory: trpezów, prbol etc. b) kwdrtury złożone. Ekstrpolcj ) Ekstrpolcj Richrdson b) Metod Romberg c) Metody dptcyjne 3. Kwdrtury

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 7.

Matematyka dla biologów Zajęcia nr 7. Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p.

Metody numeryczne. Całkowanie. Janusz Szwabiński. nm_slides-4.tex Metody numeryczne Janusz Szwabiński 23/10/ :07 p. Metody numeryczne Cłkownie Jnusz Szwbiński szwbin@ift.uni.wroc.pl nm_slides-4.tex Metody numeryczne Jnusz Szwbiński 23/10/2002 10:07 p.1/69 Cłkownie numeryczne 1. Kilk uwg ogólnych 2. Kwdrtury Newton Cotes

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Analiza Matematyczna (część II)

Analiza Matematyczna (część II) Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas

Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Kombinowanie o nieskończoności. 4. Jak zmierzyć? Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć

Bardziej szczegółowo

Całka Riemanna Dolna i górna suma całkowa Darboux

Całka Riemanna Dolna i górna suma całkowa Darboux Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

MES-1 08 Element 3-węzłowy. Całkowanie numeryczne

MES-1 08 Element 3-węzłowy. Całkowanie numeryczne MES- 8 Element -węzłowy. Cłkownie numeryczne Elementy drugiego rzędu (kwdrtowe) Co nm dje interpolcj kwdrtow liniow kwdrtow Interpolcj kwdrtow pozwl n lepsze odzwierciedlenie nie tylko funkcji, le i jej

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014) Prce Koł Mt. Uniw. Ped. w Krk. 1 014), 1-5 edgogicznego w Krkowie PKoło Mtemtyków Uniwersytetu Prce Koł Mtemtyków Uniwersytetu Pedgogicznego w Krkowie 014) Bet Gwron 1 Kwdrtury Newton Cotes Streszczenie.

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

POMIAR, JEGO OPRACOWANIE I INTERPRETACJA

POMIAR, JEGO OPRACOWANIE I INTERPRETACJA POMIAR, JEGO OPRACOWANIE I INTERPRETACJA N wynik kżdego pomiru wpływ duż ilość czynników. Większość z nich jest nieidentyfikowln, sił ich oddziływni zmieni się w sposób przypdkowy. Z tego względu, chociż

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Całka oznaczona

Analiza matematyczna i algebra liniowa Całka oznaczona Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40

Bardziej szczegółowo

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość

Bardziej szczegółowo

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P. Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Cłkownie numeryczne przy użyciu kwdrtur Pln wykłdu:. Kwdrtury ewton-cotes ) wzory: trpezów, prol etc. ) kwdrtury złożone. Ekstrpolcj ) Ekstrpolcj Richrdson ) Metod Romerg c) Metody dptcyjne. Kwdrtury Guss

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

a a a b M. Przybycień Matematyczne Metody Fizyki I

a a a b M. Przybycień Matematyczne Metody Fizyki I Relcje równowr wnowżności i klsy Definicj: Relcją określoną n zbiorze A nzywmy dowolny test porównwczy pomiędzy uporządkownymi prmi elementów elementów zbioru A. Jeśli pr (, b) œ A ä A spełni ten test,

Bardziej szczegółowo

Redukcja układów sił działających na bryły sztywne

Redukcja układów sił działających na bryły sztywne 1 Redukcj ukłdów sił dziłjących n bryły sztywne W zdnich tego rozdziłu wykorzystuje się zsdy redukcji ukłdów sił wykłdne w rmch mechniki ogólnej i powtórzone w tomie 1 podręcznik. Zdnie 1 Zredukowć ukłd

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Wykład 3: Transformata Fouriera

Wykład 3: Transformata Fouriera Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.

Bardziej szczegółowo