J. Szantyr - Wykład 5 Pływanie ciał
|
|
- Michał Pietrzyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος Archimedes z Syrakuz 97 pne nρgzds Rzuty poziome naporu na osie Ox i Oy są równe zeru. Całkowity napór sprowadza się do siły pionowej działającej na dwie części powierzchni o wspólnym konturze: dolną BAD i górną BCD.
2 Napór na dolną powierzchnię P ρg zds ρg z S Napór na górną powierzchnię P ρg zds z S ρg Napór wypadkowy P P P g( ) g z ρ z z ρ Ostatecznie wypór hydrostatyczny W Pz ρg Siła wyporu hydrostatycznego działająca na ciało zanurzone w płynie jest równa ciężarowi płynu wypartego przez to ciało. Linia działania siły wyporu przechodzi przez środek masy płynu wypartego przez ciało, zwany środkiem wyporu.
3 Wyznaczenie linii działania siły wyporu. Składowe głównego momentu siły wyporu M x ρg ( ) ( yz) z z ydsz zds y ρg d ρg d ρg yd ρgyc z y S y C P z M gdzie y ρg y C ( zds xds ) yd współrzędna yśrodka objętości z z z ( xz ) z x z ρg d ρg d ρg xd S z ρgx gdzie: C x C x C P z xd współrzędna xśrodka objętości Linia działania siły wyporu hydrostatycznego jest skierowana pionowo i przechodzi przez punkt o współrzędnych x, C yc
4 Przykład : Stożek o wysokości h wykonany z materiału o ciężarze właściwym γ pływa w cieczy wierzchołkiem w dół. Obliczyć zanurzenie stożka jeżeli ciężar właściwy cieczy wynosi γ.
5 Rozwiązanie Jeżeli oznaczymy pole podstawy stożka, a pole wodnicy pływania A z, to siła ciężkości wynosi: G Ah hγ 3 a siła wyporu: W Az zγ 3 Ah γ Z warunku równowagi wynika: G W γ Ahh γaz z z h A γ Ponieważ: A A h z h z to ostatecznie: A h z h 3 γ γ z
6 Stateczność ciał pływających Stateczność ciała całkowicie zanurzonego Równowaga trwała środek wyporu znajduje się powyżej środka ciężkości rysunek a) i b). Przy wychyleniu z położenia równowagi powstaje moment pary sił przywracający poprzednie położenie.
7 Równowaga nietrwała (chwiejna) środek wyporu znajduje się poniżej środka ciężkości rysunki c) i d). Przy wychyleniu z położenia równowagi powstaje moment pary sił powiększający wychylenie. Równowaga obojętna rysunek e) w dowolnym położeniu ciała siły wyporu i ciężkości równoważą się nie dając momentu wpływającego na położenie ciała Wniosek: w przypadku ciała całkowicie zanurzonego dla zapewnienia równowagi trwałej konieczne jest umieszczenie środka wyporu powyżej środka ciężkości.
8 Stateczność ciała częściowo zanurzonego Założenie: kąt przechyłu jest mały W przypadku ciała częściowo zanurzonego przy przechyle środek wyporu zmienia swoje położenie. Analiza stateczności polega na określeniu położenia środka wyporu po przechyleniu ciała o kąt φ Moment przechylający: M 0 Ga sinϕ G ρg - ciężar ciała M 0 ρga sinϕ
9 Moment prostujący (przywracający) dm ydw dw ρgyds sinϕ dm ρgy ds sinϕ M ρg sinϕ S y ds M M + M ρg sinϕ y ds ρgi po prawej stronie przechylonego obiektu M ρg sinϕ x S sinϕ Definiuje się wysokość metacentryczną m (patrz rysunek): M M 0 ρgi x sinϕ ρga m I x a I x sinϕ S S + S S y ds - moment bezwładności wodnicy - pole wodnicy objętość części zanurzonej
10 Możliwe są trzy przypadki: Wysokość metacentryczna jest dodatnia równowaga trwała - przy wychyleniu z położenia równowagi powstaje przywracający moment pary sił. Wysokość metacentryczna jest równa zeru równowaga obojętna Wysokość metacentryczna jest ujemna równowaga nietrwała (chwiejna) przy wychyleniu z położenia równowagi powstaje moment pary sił pogłębiający wychylenie. Wniosek: ciało częściowo zanurzone może znajdować się w równowadze trwałej nawet jeśli środek ciężkości znajduje się powyżej środka wyporu. Środek ciężkości może znajdować się tym wyżej im większy jest moment bezwładności wodnicy (czyli im szersze jest ciało).
11 Przykład Walec kołowy o promieniu podstawy R i wysokości HR pływa w położeniu pionowym (rysunek a). Środek ciężkości walca pokrywa się z jego srodkiem geometrycznym. Dla jakiej głębokości zanurzenia h równowaga walca będzie trwała?
12 Przekrój pływania (wodnica) walca jest kołem, którego moment bezwładności wynosi: 4 πr I x 4 Objętość wypartej przez walec cieczy wynosi: πr h Odległość pomiędzy środkiem ciężkości walca a środkiem wyporu wynosi: a H h R h
13 Podstawienie powyższych zależności do wzoru na wysokość metacentryczną prowadzi do: I x R m a R + 4h Co można przekształcić do postaci: 4mh R 4Rh + h Wykresem tej funkcji jest parabola (rysunek b), której miejsca zerowe można wyznaczyć przyrównując prawą stronę do zera. h 4Rh + R Powyższe równanie kwadratowe ma dwa pierwiastki: + h R 0, 9R h R, 7R 0 h
14 Z wykresu na rysunku b wynika, że równowaga trwała walca występuje przy płytkim zanurzeniu spełniającym warunek: h < 0, 9R oraz przy zanurzeniu głębokim: h >, 7R Dla pośrednich zanurzeń walca równowaga jego jest nietrwała (chwiejna).
Fy=Fsinα NAPÓR CIECZY NA ŚCIANY PŁASKIE
NAPÓR CIECZY NA ŚCIANY PŁASKIE Poszukujemy odpowiedzi na pytanie, jaką siłę należy przyłożyć do klapy zanurzonej na głębokośći h o powierzchni A aby ją otworzyć. Na głębokości h panuje ciśnienie: P = P
Rys. 1. Pływanie ciał - identyfikacja objętość części zanurzonej i objętości bryły parcia
Wypór i równowaga ciał pływających po powierzchni Reakcja cieczy na ciało w niej zanurzone nazywa się wyporem. Siła wyporu działa pionowo i skierowana jest w górę. Wypór hydrostatyczny (można też mówić
Statyka płynów - zadania
Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu:
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Pomiar siły parcie na powierzchnie płaską
Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia
Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.
Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Imię i nazwisko: ... WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2012/2013 ETAP I SZKOLNY
(pieczątka szkoły) Imię i nazwisko:.................................. Klasa.................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)
2012 Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 402 Godzina... Wyznaczanie siły wyporu i gęstości ciał WIELKOŚCI FIZYCZNE JEDNOSTKI WALEC (wpisz
WYDZIAŁ OCEANOTECHNIKI I OKRĘTOWNICTWA. Katedra Hydromechaniki i Hydroakustyki
WYDZIAŁ OCEANOTECHNIKI I OKRĘTOWNICTWA Katedra Hydromechaniki i Hydroakustyki ĆWICZENIA LABORATORYJNE Z HYDROMECHANIKI OKRĘTU Ćwiczenie Nr 1 Doświadczalne określanie krzywej ramion prostujących modelu.
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Tarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA. January Szafraniak; Karolina Staszewska
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA STATECZNOŚĆ STATKU Z UJEMNĄ OCZĄTKOWĄ WYSOKOŚCIĄ METACENTRYCZNĄ Zajęcia laboratoryjne z przedmiotu: Budowa
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Schemat punktowania zadań
Maksymalna liczba punktów 60 85% 5pkt KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 7 stycznia 0 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y
Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
WYMAGANIA NA OCENĘ 12. Równania kwadratowe Uczeń demonstruje opanowanie umiejętności ogólnych rozwiązując zadania, w których:
str. 1 / 1. Równania kwadratowe sprawdza, czy liczba jest pierwiastkiem równania, po uporządkowaniu równania określa jego rodzaj (zupełne, niezupełne), rozwiązuje proste uporządkowane równania zupełne
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
501 892 942, SJM PZŻ/8211,
Teoria Żeglowania Tomasz Jarzębski Telefon: 501 892 942, Żeglarz: SJM PZŻ/8211, Instruktor PZŻ: MIŻ4334, Instruktor ISSA: Inland 00420, Instruktor ISSA: SEA 00394 http://www.pro-skippers.com/skipper/343
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ. Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik,
3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ
3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TEORIA I BUDOWA OKRĘTU. Kod przedmiotu: Ubo 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Ciśnienie zewnętrzne jest przenoszone we wszystkich kierunkach jednakowo.
Włodzimierz Wolczyński 15 HYDROSTATYKA Prawo Pascala Ciśnienie zewnętrzne jest przenoszone we wszystkich kierunkach jednakowo. Ciśnienie hydrostatyczne = h Warunek równowagi hydrostatycznej dwóch cieczy
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
2012/13. Mechanika Płynów (studia dzienne rok II, semestr 3) Praca domowa nr 1. http://www.ip.simr.pw.edu.pl
2012/13 Mechanika Płynów (studia dzienne rok II, semestr 3) Praca domowa nr 1 http://www.ip.simr.pw.edu.pl Studia Inżynierskie Mechanika płynów Praca domowa 1 Zadanie nr 1 Wyprowadzić równanie równowagi
Własności fizyczne kajaka. Opracowanie: Jerzy Świtek
Własności fizyczne kajaka. Opracowanie: Jerzy Świtek Spis treści. Część I. Kajak na stojącej, płaskiej wodzie. 1. Dlaczego kajak pływa? 2. Dlaczego dno kajaka jest na dole, a kokpit u góry? 3. Dlaczego
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XXXI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Rozwiąż dowolnie przez siebie wybrane dwa zadania spośród poniższych trzech: Nazwa zadania: ZADANIE T A. Oblicz moment bezwładności jednorodnego
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
WOJEWÓDZKI KONKURS FIZYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 2018/2019 31.10.2018 r. 1. Test konkursowy zawiera 18 zadań. Są to zadania zamknięte
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.
ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.
Zasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)
STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s
1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³
1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³ Imię i nazwisko, klasa A 1. Wymień trzy założenia teorii kinetyczno-cząsteczkowej budowy ciał. 2. Porównaj siły międzycząsteczkowe w trzech stanach
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
"Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału
"Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału Etap I Termin konkursu: 15 października 2014 r. godz. 17.00 Wyniki konkursu: do 25 października 2014r. 1. Matematyka-
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.
Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,
OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym
OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy
Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
1 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1 (1 punkt) Spadochroniarz opada ruchem jednostajnym. Jego masa wraz z wyposażeniem wynosi 85 kg Oceń prawdziwość
Podstawy fizyki wykład 5
Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań
Wytrzymałość materiałów zbiór zadań 1. Charakterystyki geometryczne przekroju pręta 1.1. Zadanie 1 Wyznaczyć położenie środka ciężkości prętów stalowych w elemencie żelbetowym przedstawionym na rysunku
KOLOKWIUM w piątek 8 grudnia
izyka 1 KOLOKWIUM w piątek 8 grudnia Na kolokwium obowiązują Państwa zagadnienia omawiane na wykładach 1 7 zgodnie z prezentacjami zamieszczonymi na stronie. Przypominam, że dostępne na stronie prezentacje
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
9. Mimośrodowe działanie siły
9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.
Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1
Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności * Rozwiązanie zadania * Oznaczenia : A [cm²] - pole powierzchni figury Xo [cm] - współrzędna
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR
TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR W układzie współrzędnych zaznaczmy dowolny punkt A = (x, y) oraz wektor u r = [p, q]. Po przesunięciu punktu A o wektor u r otrzymamy punkt
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop
Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt
WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych
WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo