wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
|
|
- Wiktoria Laskowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 15 ZGNANE UKOŚNE Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe do podłużnej osi beki powoduje jej inanie. Przez środek ciężkości przekroju przechodzą osie centralne (y-z). Linię łącząca środki ciężkości przekrojów nazywamy osią belki (x). stnieją dwie osie centralne, prostopadłe do siebie, wlędem których momenty bezwładności figury pola przekroju belki, osiągają wartości ekstremalne. Osie te nazywamy głównymi ( ), zaś wartości tych momentów bezwładności głównymi centralnymi momentami bezwładności przekroju. Płaszczyzny wyznaczone osiami (-) oraz osią x nazywamy płaszczyznami głównymi. Zginanie płaskie (rys. 15.1) zachodzi wtedy, gdy obciążenia wywołujące inanie, a więc i momenty gnące, działają w płaszczyźnie zawierającą oś belki i jedną z głównych centralnych osi bezwładności przekroju. Druga główna centralna oś bezwładności przekroju pokrywa się z osią obojętną przy inaniu. Linia ugięcia belki jest krzywą płaską i leży w płaszczyźnie obciążenia beki (w płaszczyźnie inania). Zginanie ukośne (rys. 15.2) występuje wówczas gdy płaszczyzna, w której działa obciążenie inające belkę nie leży w żadnej z dwóch płaszczyzn wyznaczonych przez oś belki i główną centralną oś bezwładności przekroju. Oś obojętna przy inaniu ukośnym nie jest prostopadła do płaszczyzny inania belki. W tym przypadku ugięta oś belki nie leży w płaszczyźnie działania sił obciążających belkę Cel ćwiczenia Celem ćwiczenia jest: doświadczalne wyznaczenie strzałki ugięcia i naprężeń w belce wspornikowej poddanej inaniu płaskiemu oraz ukośnemu, porównanie otrzymanych wyników z wartościami wyznaczonymi na podstawie wzorów teoretycznych, Określenia podstawowe Na rys pokazano przykład inania płaskiego belki wspornikowej o długości L i przekroju prostokątnym b h (b>h) Główne centralne momenty bezwładności przekroju wynoszą: 3 b h = min = (15.1) 12 3 h b = max = (15.2) 12 Zginanie ukośne można uważać za rezultat inania belki w dwóch płaszczyznach wzajemnie prostopadłych przechodzących przez główne centralne osie bezwładności przekroju (, ) i podłużną oś belki (rys. 15.3) Siłę P rozkładamy na dwie składowe wzdłuż głównych centralnych osi bezwładności przekroju: Pz = P sinα g (15.3) P = P cosα 1
2 2
3 3
4 4
5 Momenty gnące w przekroju odległym o x od początku układu osi: M = P x = P x sinα (15.4) M = P x = P x cosα gdzie : M wektor momentu gnącego wlędem osi M wektor momentu gnącego wlędem osi Naprężenie normalne w dowolnym punkcie rozpatrywanego przekroju jest sumą algebraiczną naprężeń powstałych od momentów gnących działających w płaszczyznach głównych belki: M y M z P x cosα y P x sinα z σ = + = + (15.5) Np. dla x = L1 w punkcie A (rys. 15.1, 15.4) naprężenia wynoszą: σ A P L1 cosα h/2 P L1 sinα b/2 = + (15.5 a) Składowe ugięcia końca belki w płaszczyznach głównych obliczamy z wzorów: 3 P cosα L f = (15.6) 3 E f 3 P sinα L = (15.7) 3 E Uwaga: Na rys b pokazano schematycznie składowe przemieszczenia końca belki obróconej o kąt α. Przeciwprostokątna zakreskowanego trójkąta przedstawia wypadkową strzałkę ugięcia końca belki. Z geometrycznych zależności wynika, że: f = f + f (15.8) w 2 gdzie: f, f - składowe strzałki ugięcia obliczone 2 f = f + f (15.9) w 2 y gdzie: f y, f z - składowe strzałki ugięcia zmierzone 2 z 5
6 15.5. Opis stanowiska pomiarowego Badana belka wspornikowa o przekroju prostokątnym, obciążona jest siłą P na swobodnym końcu. Konstrukcja zamocowania belki (t.zw podzielnica kątowa) umożliwia obracanie jej dookoła osi x (rys. 15.2) o kąt α. mostek czujniki tensometryczny podzielnica belka przemieszczeń Rys Stanowisko do badań inania płaskiego i ukośnego Gdy kąt α = 0 lub α = 90 inanie jest płaskie, gdyż wówczas jedna z głównych centralnych osi bezwładności przekroju belki pokrywa się z płaszczyzną, w której działa obciążenie belki. W tym przypadku ięta oś belki leży w płaszczyźnie działania siły obciążającej i osi x. Jeżeli kąt 0 <α <90, wówczas belka poddana jest inaniu ukośnemu. Gdy występuje inanie ukośne ięta oś belki nie leży w płaszczyźnie działania sił (jest zwichrowana). Na powierzchniach belki w pobliżu zamocowania, naklejone są tensometry elektrooporowe, oznaczone 1 4, umożliwiające pomiar naprężeń. Tensometry połączone są z mostkiem tensometrycznym rejestrującym wyniki pomiarów. Mostek tensometryczny wycechowany jest tak, że pokazuje wartości naprężeń w MPa. 6
7 Na swobodnym końcu belki znajduje się łożysko wahliwe wraz z konstrukcją umożliwiającą obciążanie belki pionową siłą P. Ugięcia końca belki (przemieszczenia obudowy łożyska) mierzone są czujnikami potencjometrycznymi Przeprowadzenie ćwiczenia Obliczenia teoretyczne Wykonać obliczenia teoretyczne wg wzorów i zamieścić w tabelach wyników Pomiary naprężeń i ugięć belki Wykonać kolejno następujące czynności: - Włączyć układ pomiarowy (włącznikiem na listwie zasilającej) oraz komputer - Kliknąć 2x ikonę (uruchomić program) Esman USB - Kliknąć Dane pomiarowe następnie Pomiar - Zaakceptować nazwę zadania Zginanie ukośne OK. - Kliknąć Rozpocznij pomiary Pomiary: 1. Za pomocą pokrętła podzielnicy ustawić kąt położenia belki α=0 2. Z ekranu monitora odczytać wskazania tensometrów 1 4 i zapisać w tabeli pomiarów w wierszu Wskazanie mostka przed obc. σ a 3. Z ekranu monitora odczytać wskazania czujników przemieszczeń (odległości między ramką a obudową łożyska: fy w pionie i fz w poziomie i zapisać w tabeli pomiarów w wierszu Wskazanie czujnika w kierunku: fy fz przed obciążeniem. 4. Obciążyć belkę siłą 100 N 5. Odczytać wskazania mostka σ b i czujników przemieszczeń oraz zapisać w tabeli pomiarów w odpowiednich wierszach j.w. po obciążeniu. 6. Odciążyć belkę. 7. Punkty 2 6 powtórzyć dla kątów α = 30,45, Kliknąć Zakończyć pomiar - Kliknąć czy zatrzymać pomiar TAK. - Kliknąć Koniec - Zamknąć system - Wyłączyć układ z sieci wyłącznikiem na listwie zasilającej. - Wykonać obliczenia naprężeń σ i f w (uwlędnić znaki) Porównać między sobą wyniki pomiarów i obliczeń teoretycznych Wykonanie sprawozdania W sprawozdaniu należy podać: 1) cel ćwiczenia 2) definicje inania płaskiego i ukośnego 3) zestawienie wyników obliczeń i pomiarów w tabelce 7
8 Tablica 1. Wyniki obliczeń i pomiarów Tablica 15.1 Dane do obliczeń i pomiarów Siła obciążająca P= 100 N Szerokość przekroju belki b= 50 mm Długość belki L= 1220 mm Wysokość przekroju belki h= 10 mm Odległ. od p. przyłożenia siły P do śr. tensom. L1= 1140 mm Główne centralne momenty bezwł. = mm 4 Moduł Younga E= MPa przekroju belki (wzory 15.1 i 15.2) = mm 4 Tablica 15.2 Naprężenia w przekroju belki (rys.15.4) Teoretyczne naprężenia Kąt obrotu belki α [ ] Nr tensometru (rys. 15.1) Naprężenie σ [MPa] (wzór 15.5) Naprężenie w p. A σ Amax [MPa] (wzór 15.5a) Zmierzone naprężenia Wskazanie mostka przed obc. σ a [MPa] Wskazanie mostka po obc. σ b [MPa] Naprężenie σ = σ b - σ a [MPa] Naprężenie w p. A σ Amax = σ tens1 +σ tens2 [MPa] Tablica 15.3 Ugięcia belki Teoretyczne ugięcia Kąt obrotu belki α [ ] Ugięcie w pł. -x f [mm] (wzór 15.6) Ugięcie w pł. -x f [mm] (wzór 15.7) Ugięcie wypadkowe f w [mm] (wzór 15.8) Zmierzone ugięcia Wskazanie czujnika przemieszczenia w kierunku: fy fz fy fz fy fz fy fz przed obciążeniem A 1 [mm] po obciążeniu A 2 [mm] Składowe ucięcia /A 2 -A1/ [mm] Ugięcie wypadkowe f w [mm] (wzór 15.9) 8
Ć w i c z e n i e K 4
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Badanie ugięcia belki
Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Wyznaczenie reakcji belki statycznie niewyznaczalnej
Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE
WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej
Modelowanie Wspomagające Projektowanie Maszyn
Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
6.1. Wstęp Cel ćwiczenia
Temat 4 ( godziny): Tensometria elektrooporowa 6.. Wstęp W dziedzinie konstrukcji maszyn szczególnej doniosłości i praktycznego znaczenia nabrała w ostatnich latach doświadczalna analiza naprężeń. Bardzo
INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych
ZAKŁAD PODSTAW KONSTRUKCJI I EKSPLOATACJI MASZYN ENERGETYCZNYCH Instytut Maszyn i Urządzeń Energetycznych Politechnika Śląska INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych Wprowadzenie
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
POMIARY WYMIARÓW ZEWNĘTRZNYCH, WEWNĘTRZNYCH, MIESZANYCH i POŚREDNICH
PROTOKÓŁ POMIAROWY Imię i nazwisko Kierunek: Rok akademicki:. Semestr: Grupa lab:.. Ocena.. Uwagi Ćwiczenie nr TEMAT: POMIARY WYMIARÓW ZEWNĘTRZNYCH, WEWNĘTRZNYCH, MIESZANYCH i POŚREDNICH CEL ĆWICZENIA........
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.
Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.
Laboratorium Wytrzymałości Materiałów
Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów
Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem tensometrii elektrooporowej. KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU Instrukcja do ćwiczeń laboratoryjnych Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 3 Badanie reakcji podporowych w konstrukcjach płaskich Cel ćwiczenia Celem ćwiczenia jest porównanie wartości
Sensory i Aktuatory Laboratorium. Mikromechaniczny przyspieszeniomierz i elektroniczny magnetometr E-kompas
Sensory i Aktuatory Laboratorium Mikromechaniczny przyspieszeniomierz i elektroniczny magnetometr E-kompas Zagadnienia do samodzielnego przygotowania przed laboratorium. 1. Zasada działania, konstrukcja
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
Laboratorium metrologii
Wydział Inżynierii Mechanicznej i Mechatroniki Instytut Technologii Mechanicznej Laboratorium metrologii Instrukcja do ćwiczeń laboratoryjnych Temat ćwiczenia: Pomiary wymiarów zewnętrznych Opracował:
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW
Józef Zawada Instrukcja do ćwiczenia nr P12 Temat ćwiczenia: POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Cel ćwiczenia Celem niniejszego ćwiczenia jest
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Wyznaczanie modułu Younga metodą zginania pręta
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu FIZYKA Kod przedmiotu KS017; KN017; LS017; LN017 Ćwiczenie Nr 1 Wyznaczanie modułu Younga metodą
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 3 Badanie reakcji w układzie belkowym 1 Cel ćwiczenia Celem ćwiczenia jest poznanie metody wyznaczania reakcji
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E
Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności
ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych
ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
STATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania
UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I
Badanie i obliczanie kąta skręcenia wału maszynowego
Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn
Badanie i obliczanie kąta skręcenia wału maszynowego
Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny
Celem ćwiczenia jest poznanie metod pomiaru odkształceń za pomocą tensometrii oporowej oraz zapoznanie się z obsługą mostka tensometrycznego.
LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Ćwiczenie 6 TENSOMETRA OPOROWA 6.. WYZNACZANE NAPRĘŻEŃ W BELCE ZGNANEJ METODĄ TENSOMETR OPOROWEJ 6... Wprowadzenie Przy rozwiązywaniu zagadnień wytrzymałościowych stosowane
Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.
Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
DIPOLOWY MODEL SERCA
Ćwiczenie nr 14 DIPOLOWY MODEL SERCA Aparatura Generator sygnałów, woltomierz, plastikowa kuweta z dipolem elektrycznym oraz dwiema ruchomymi elektrodami pomiarowymi. Rys. 1 Schemat kuwety pomiarowej Rys.
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
LABORATORIUM METROLOGII
AKADEMIA MORSKA W SZCZECINIE Centrum Inżynierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczenie 1 y z zastosowaniem przyrządów z noniuszem Szczecin, 2010 Zespół wykonawczy: Dr inż. Paweł Zalewski str.
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń opracowanie: dr inŝ. Marek Golubiewski, mgr inŝ. Jolanta Bondarczuk-Siwicka
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych
LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn BUDOWA STANOWISKA
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
Badania doświadczalne płyty kołowej osiowosymetrycznej
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badania
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA
BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:
ZGINANIE PŁASKIE BELEK PROSTYCH
ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
Wytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki