Dr inż. Janusz Dębiński

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dr inż. Janusz Dębiński"

Transkrypt

1 Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów. Przekrój tej belki przedstawiono na rysunku 5.b. a) 4,0 kn/m α α 6,0,0,0,0 kn [m] b) E sc= 4 h S 4 h S h S 4 h S 4 h S Rys. 5.. elka swobodnie podparta. a) wymiary i obciążenie belki, b) przekrój belki 5.. naliza kinematyczna belki Na rysunku 5. przedstawiono belkę swobodnie podpartą traktowaną jako płaski układ tarcz sztywnych. Składa się on z jednej tarczy sztywnej i trzech prętów podporowych. Warunek konieczny geometrycznej niezmienności ma postać 3 =3. S-I

2 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład I 3 Rys. 5.. elka swobodnie podparta traktowana jako płaski układ tarcz sztywnych Jest on spełniony. Tarcza sztywna numer I jest połączona z tarczą podporową za pomocą trzech prętów pod - porowych, których kierunki nie przecinają się w jednym punkcie. Tarcza ta jest geometrycznie niezmienna. elka swobodnie podparta jest wobec tego także geometrycznie niezmienna i statycznie wyznaczalna naliza statyczna belki Na rysunku 5.3 przedstawiono założone zwroty reakcji podporowych. Pozioma reakcja H wynosi zero. Reakcję V wyznacza się z równania równowagi Reakcję V wyznacza się z równania równowagi Σ M =V 8,0 4,0 6,0 (,0+ 3 6,0 ) +,0,0=0 V =5,0 kn. Równanie sprawdzające Σ M = V 8,0+ 4,0 6,0 3 6,0+,0 =0 V =33,0 kn. Σ Y=V +V 4,0 6,0,0=5,0+33,0 7,0,0=0. Na rysunku 5.4 przedstawiono prawidłowe wartości i zwroty reakcji podporowych w belce swobodnie podpartej. 4,0 kn/m,0 kn Y H V V 6,0,0,0 [m] Rys ałożone zwroty reakcji podporowych w belce 4,0 kn/m 5,0 kn 33,0 kn 6,0,0,0,0 kn [m] Rys Prawidłowe wartości i zwroty reakcji podporowych w belce S-I

3 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład Wykres siły poprzecznej Postacie funkcji siły poprzecznej w belce swobodnie podpartej wyznaczone na podstawie obciążenia przedstawiono w tabeli 5.. Tabela 5.. Postacie funkcji siły poprzecznej w belce swobodnie podpartej Przedział Funkcja siły poprzecznej kwadratowa 0 lub stała 0 lub stała Siła poprzeczna w punkcie Siła poprzeczna z lewej strony punktu T =5,0 kn. L T =5,0 4,0 6,0=,0 kn. Położenie miejsca zerowego siły poprzecznej w przedziale Siła poprzeczna z prawej strony punktu x 0= T K L q =,0 6,0 =3,40 m. 4,0 P T =,0 kn. Siły poprzeczne w przedziale oraz z lewej strony punktu Siła poprzeczna z prawej strony punktu Siły poprzeczne w przedziale oraz w punkcie T =T L =,0kN. T P =,0 33,0=,0kN. T =T =,0kN. Wykres siły poprzecznej w belce przedstawiono na rysunku Wykres momentu zginającego Postacie funkcji momentu zginającego w belce swobodnie podpartej wyznaczone na podstawie wykresu siły poprzecznej przedstawiono w tabeli 5.. Tabela 5.. Postacie funkcji momentu zginającego w belce swobodnie podpartej Przedział Funkcja momentu zginającego trzeciego stopnia liniowa liniowa Moment zginający w punkcie M = kn m. S-I

4 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 4 Moment zginający z lewej strony punktu M L =5,0 6,0 4,0 6,0 3 6,0=8,0kN m. godnie z rysunkiem 5.5 wartość obciążenia ciągłego w punkcie, w którym siła poprzeczna ma miejsce zerowe można wyznaczyć z proporcji q 3,40 = 4,0 6,0, q =,96 kn m. godnie z rysunkiem 5.6 ekstremalny moment zginający w przedziale M =33,0 3,40,0,0 4,0 3,40,96 3,40 3,40=63,37 kn m. 3 Moment zginający z prawej strony punktu Moment zginający z lewej strony punktu P M =33,0,0,0 4,0=8,0kN m. M L =5,0 8,0 4,0 6,0 3 6,0,0 = 4,0 kn m. Moment zginający z prawej strony punktu P M =,0,0= 4,0 kn m. Moment zginający w punkcie M = knm. Wykres momentu zginającego w belce przedstawiono na rysunku ,0 kn/m q 3,40 [m] 6,0 Rys Wartość obciążenia ciągłego w miejscu zerowym siły poprzecznej,96 kn/m,0 kn M 33,0 kn 3,40,0,0 [m] Rys Ekstremalny moment zginający w przedziale S-I

5 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład Wykresy sił przekrojowych w belce Na rysunku 5.7 przedstawiono prawidłowe wartości i zwroty reakcji podporowych oraz wykresy siły poprzecznej i momentu zginającego w belce. 4,0 kn/m,0 kn α 5,0 kn 33,0 kn 6,0,0,0 [m] α 5,0,0 T(x) [kn],760 3,40,0 63,37 8,0 4,0 M(x) [kn m],760 3,40 Rys Wykresy sił przekrojowych w belce 5.7. aprojektowanie przekroju belki godnie z rysunkiem 5.7 ekstremalny moment zginający na długości belki Wytrzymałość materiału M Y ET =63,37 kn m=6337 kn. R=5,0 MPa=,5 kn. Wskaźnik wytrzymałości przekroju na zginanie przekroju powinien spełniać warunek W Y > M (ET ) Y R =6337,5 =94,7 3. Na rysunku 5.8a przedstawiono dwuteownik 40, którego wskaźnik wytrzymałości na zginanie W (T ) =354,0 3. Na rysunku 5.8b przedstawiono blachownicowy przekrój dwuteowy. Główny moment bezwładności tego przekroju względem osi Y J Y =J Ygl =,0 3,83 0,,03 = S-I

6 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 6 a) b) 0,6 0,87,3 4,0,4,0,4 7, ,9 sc=3 5,5 5,5,9,9 3,8 Rys Fazy projektowania przekroju pręta. a) przekrój walcowany, b) przekrój blachownicowy Wskaźnik wytrzymałości przekroju blachownicowego W Y = J Y h = ,8 =383,43 >94, Wykresy naprężeń Na rysunku 5.9 przedstawiono wartości i zwroty siły poprzecznej oraz momentu zginającego działające w przekroju α-α odczytane na podstawie rysunku 5.7. Wartość bezwzględna siły poprzecznej Moment zginający Funkcja naprężenia normalnego T =,0 kn. M Y = 4,0kN m= 400 kn. σ = M Y z= 400 z = 0,560 z. J Y 4563 Naprężenia normalne w punktach od do 5 przedstawionych na rysunku 5.8b ( ) = 0,560 z = 0,560,9= 6,59 kn = 6,59 MPa; σ ( ) = 0,560 z= 0,560 0,5= 5,53 kn = 55,3 MPa ; σ σ ( 3 ) = 0,560 z= 0,560 = kn = MPa ; σ ( 4) = 0,560 z= 0,560 ( 0,5)=5,53 kn =55,3 MPa ; S-I

7 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 7,0 kn 4,0 kn m σ Rys Siły przekrojowe działające w przekroju α α ( 5) = 0,560 z = 0,560 (,9)=6,59 kn =6,59 MPa. Wykres naprężenia normalnego σ przedstawiono na rysunku 5.. W punkcie naprężenie styczne godnie z rysunkiem 5.0a w punkcie τ τ () =MPa. ( p) = T S Y ( z ) =,0 (,0,4,) =76 kn b ( z) J Y, =0,76MPa ; ( s) = T S Y ( z ) b ( z) J Y τ godnie z rysunkiem 5.0b w punkcie 3 W punktach 4 i 5 ( 3) = T S Y ( z ) b ( z) J Y τ =,0 (,0,4,) 0, =,0 (,0,4,+0,5 0,9 5,5) 0, ( 4p) τ =0,76 MPa ; ( 4s) τ =8,80 MPa ; τ 5 = MPa. =0,880 kn =8,80 MPa. =,36 kn =,36 MPa. Wykres naprężenia stycznego τ przedstawiono na rysunku 5.. godnie z rysunkiem 5. w punkcie 6 ( 6) = T S Y ( y) h ( y ) J Y τ Y W punkcie 7 naprężenie styczne =,0 (5,05,4,), τ Y = MPa. Wykres naprężenia stycznego τ Y przedstawiono na rysunku 5.. =0,603 kn =,603 MPa Naprężenia główne Oznaczenia punktów przyjęto zgodnie z rysunkiem 5.b. Naprężenia główne w punkcie σ gl = 6,59 MPa; S-I

8 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 8 a) b),4,0,4 0,9 sc sc,0,,9,9,4,0,4 0,5 0,9 3=sc sc sc,0 5,5,,9,9 Rys zęści przekroju dwuteowego. a) dla punktu, b) dla punktu 3,4,0,4, 6 sc 3 5,05 sc 0,9,0,9,9 Rys. 5.. zęść półki dla punktu 6 σ gl = MPa. Naprężenia główne w punkcie σ gl =,36 MPa; σ gl =,36 MPa. Naprężenia główne w punkcie E σ gl =6,59 MPa ; σ gl = MPa. godnie z rysunkiem 5.3a w punkcie ( ) = 0,560 z= 0,560 5,5=,76 kn = 7,6 MPa; σ S-I

9 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 9 [MPa],603,603 τ Y σ 6,59 55,3 τ 0,76 8,80,0 kn 4,0 kn m sc=3,36 N= kn [MPa],603,603 τ Y 55,3 6,59 [MPa] [MPa] 8,80 0,76 Rys. 5.. Wykresy naprężeń normalnego σ oraz stycznych τ Y i τ w przekroju belki a),4,0,4,0 0,9 sc 7,875 sc sc 5,5 5,5,,9,9 b),4,0,4 7,875,0 sc sc sc 5,5 5,5, 0,9,9,9 τ Rys zęść przekroju dwuteowego. a) dla punktu, b) dla punktu ( ) = T S Y ( z ) b ( z) J Y =,0 (,0,4,+5,5 0,9 7,875) 0, =,07 kn =0,7 MPa ; Kierunek główny w punkcie czyli τ = 0,7 MPa. tg ( α gl )= τ = ( 0,7) σ σ ( 7,6) = 0,776 ; α gl = 8,9. S-I

10 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 0 Naprężenia główne w punkcie σ gl = σ +σ + σ σ cos( α gl )+τ sin ( α gl )= +( 7,6) + + ( 7,6) cos ( ( 8,9 )) 0,7 sin ( ( 8,9 ))=3,67 MPa; σ gl = σ +σ σ σ cos( α gl ) τ sin ( α gl )= +( 7,6) ( 7,6) cos ( ( 8,9 )) ( 0,7) sin ( ( 8,9 ))= 3,9 MPa; σ / = σ +σ ± ( σ σ ) +τ = +( 7,6) Niezmienniki stanu naprężenia w punkcie w układzie I =σ +σ =+( 7,6)= 7,6 MPa; ± ( ( 7,6) ) +( 0,7) = { 3,67 MPa 3,9 MPa. I =σ σ τ = ( 7,6) ( 0,7) = 4,9 MPa. Niezmienniki stanu naprężenia w punkcie w układzie osi głównych godnie z rysunkiem 5.3b w punkcie τ σ ( ) = T S Y ( z ) b ( z) J Y I =σ gl +σ gl =3,67 3,9= 7,6 MPa ; I =σ gl σ gl =3,67 ( 3,9)= 4,9 MPa. ( ) = 0,560 z= 0,560 ( 5,5 )=,76 kn =7,6 MPa ; =,0 (,0,4,+5,5 0,9 7,875) 0, =,07 kn =0,7 MPa ; Kierunek główny w punkcie czyli Naprężenia główne w punkcie ( τ ) = 0,7 MPa. tg ( α gl )= τ σ σ = ( 0,7) 7,6 =0,776 ; α gl =8,9. σ gl = σ +σ + σ σ cos( α gl )+τ sin ( α gl )= +7, ,6 cos ( 8,9 ) 0,7 sin ( 8,9 )= 3,67 MPa ; σ gl = σ +σ σ σ cos( α gl ) τ sin ( α gl )= +7,6 7,6 cos ( 8,9 ) ( 0,7) sin ( 8,9 )=3,9 MPa ; S-I

11 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład σ / = σ +σ ± ( σ σ ) +τ = +7,6 Niezmienniki stanu naprężenia w punkcie w układzie I =σ +σ =+7,6=7,6 MPa; ± ( 7,6 ) +( 0,7) = { 3,9 MPa 3,67 MPa. I =σ σ τ = 7,6 ( 0,7) = 4,9 MPa. Niezmienniki stanu naprężenia w punkcie w układzie osi głównych I =σ gl +σ gl = 3,67+3,9=7,6 MPa ; I =σ gl σ gl =( 3,67) 3,9= 4,9 MPa. Graficzną interpretację naprężeń w układach i w układach osi głównych w punktach od do E przed - stawiono na rysunku 5.4. = gl 6,59 MPa E 6,59 MPa 6,59 MPa E 6,59 MPa 0,7 MPa 7,6 MPa,36 MPa 7,6 MPa 0,7 MPa,36 MPa,36 MPa 3,9 MPa 3,67 MPa 8,9 O gl 3,67 MPa gl 3,9 MPa 0,7 MPa,36 MPa,36 MPa,36 MPa 3,9 MPa 3,67 MPa 7,6 MPa 7,6 MPa 0,7 MPa 8,9 O = gl gl 3,67 MPa gl 3,9 MPa 6,59 MPa 6,59 MPa 6,59 MPa 6,59 MPa Rys Naprężenia w układach oraz w układach osi głównych S-I

12 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 5.0. Wykresy naprężeń zredukowanych Naprężenia zredukowane σ red według hipotezy Hubera zostaną wyznaczone na podstawie wykresów naprężeń normalnego σ oraz stycznych τ Y i τ, które są przedstawiona na rysunku 5.. godnie z nim w punktach od do 7 ( σ ) red = σ +3 τ = ( 6,59) +3 =6,59 MPa ; ( σ ) red = σ +3 τ = ( 55,3) +3 ( 8,80) =57,30 MPa; ( 3 σ ) red = σ +3 τ = +3 (,36) =9,68 MPa; ( 4 σ ) red = σ +3 τ = 55,3 +3 ( 8,80) =57,30 MPa; ( 5 σ ) red = σ +3 τ = 6,59 +3 =6,59 MPa; ( 6 ) = σ +3 τ Y = 6,59 +3,603 =6,75 MPa ; σ red 7 = σ 3 τ Y = 6,59 3 =6,59 MPa. σ red Wykresy naprężeń zredukowanych według hipotezy Hubera przedstawiono na rysunku 5.5 6,59 6,75 6,75 6,59 [MPa] σ red σ red 6, ,30,0 kn 4,0 kn m sc=3 9,68 N= kn 57,30 [MPa] 6,59 Rys Wykresy naprężeń zredukowanych według hipotezy Hubera 5.. Stan odkształcenia w punkcie W punkcie panuje stan naprężenia opisany składowymi Stałe materiałowe stali, z której wykonana jest belka ( σ ) = 7,6 MPa ; τ = 0,7 MPa. E=05,0 GPa=05000 MPa ; ν=0,3 ; S-I

13 Wytrzymałość materiałów ćwiczenia projektowe Projekt numer 5 przykład 3 Odkształcenia liniowe i postaciowe w punkcie G= E (+ν) = 05,0 =78,85GPa=78850 MPa. (+0,3) ε = E [σ ν (σ Y +σ )]= [ 7,6 0,3 (+ )]= 00347= 34,7 0 6 ; ε Y = E [σ Y ν (σ +σ )]= [ 0,3 ( 7,6+ )]=000404=40,4 0 6 ; ε = E [σ ν (σ +σ Y )]= [ 0,3 ( 7,6+ )]=000404=40,4 0 6 ; Tensor odkształcenia ma postać Naprężenia główne w punkcie Odkształcenia główne w punkcie ε = τ G = 0, = = 67, ; ε Y =ε Y =0. 34,7 0 67, ,4 0 ε=[ ] , ,4 σ gl =3,67 MPa ; σ gl = 3,9 MPa; σ Ygl = MPa. ε gl = E [σ gl ν (σ Ygl +σ gl )]= [ 3,9 0,3 (+3,67)]= 00580= 58,0 0 6 ; ε Ygl = E [σ Ygl ν (σ gl +σ gl )]= [ 0,3 ( 3,9+3,67)]=000404=40,4 0 6 ; ε gl = E [σ gl ν (σ gl +σ Ygl )]= [3,67 0,3 ( 3,9+ )]= =63, Tensor odkształcenia ma postać ε=[ 58, , ,70] 0 6. S-I

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów BILET No 1

Mechanika i wytrzymałość materiałów BILET No 1 Mechanika i wytrzymałość materiałów BILET No 1 1. Prawa ruchu Newtona. 2. Projektowanie prętów skręcanych ze względu na wytrzymałość oraz kąt skręcania. 3. Belka AB o cięŝarze G oparta jak pokazano na

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

WIERZBICKI JĘDRZEJ. 4 (ns)

WIERZBICKI JĘDRZEJ. 4 (ns) WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

1. ANALIZA BELEK I RAM PŁASKICH

1. ANALIZA BELEK I RAM PŁASKICH 5/6 1. NIZ BEEK I RM PŁSKICH 1 1. NIZ BEEK I RM PŁSKICH 1.1 naliza kinematyczna podstawowe definicje Podstawowym pojęciem stosowanym w analizie kinematycznej belek i ram płaskich jest tarcza sztywna. Jest

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM. Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań

Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań Wytrzymałość materiałów zbiór zadań 1. Charakterystyki geometryczne przekroju pręta 1.1. Zadanie 1 Wyznaczyć położenie środka ciężkości prętów stalowych w elemencie żelbetowym przedstawionym na rysunku

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.

ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne. ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary: 7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. 10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Sprawdzenie stanów granicznych użytkowalności.

Sprawdzenie stanów granicznych użytkowalności. MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH 7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór

Bardziej szczegółowo

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

Konstrukcje metalowe Wykład IV Klasy przekroju

Konstrukcje metalowe Wykład IV Klasy przekroju Konstrukcje metalowe Wykład IV Klasy przekroju Spis treści Wprowadzenie #t / 3 Eksperyment #t / 12 Sposób klasyfikowania #t / 32 Przykłady obliczeń - stal #t / 44 Przykłady obliczeń - aluminium #t / 72

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

10.0. Schody górne, wspornikowe.

10.0. Schody górne, wspornikowe. 10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

1. Połączenia spawane

1. Połączenia spawane 1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

Współczynnik określający wspólną odkształcalność betonu i stali pod wpływem obciążeń długotrwałych:

Współczynnik określający wspólną odkształcalność betonu i stali pod wpływem obciążeń długotrwałych: Sprawdzić ugięcie w środku rozpiętości przęsła belki wolnopodpartej (patrz rysunek) od quasi stałej kombinacji obciążeń przyjmując, że: na całkowite obciążenie w kombinacji quasi stałej składa się obciążenie

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011 Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym

Bardziej szczegółowo