Prosta i płaszczyzna w przestrzeni

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prosta i płaszczyzna w przestrzeni"

Transkrypt

1 Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego prostej w R 3 x = x 0 + at l : y = y 0 + bt z = z 0 + ct, gdzie t R; postać kierunkowa prostej: l : x x 0 a = y y 0 b = z z 0 c Prosta przechodząca przez dwa różne punkty P 0 (x 0 ; y 0 ; z 0 ) i P 1 (x 1 ; y 1 ; z 1 ) równanie w postaci parametrycznej x = x 0 + t(x 1 x 0 ) l : y = y 0 + t(y 1 y 0 ) z = z 0 + t(z 1 z 0 ), gdzie t R równanie w postaci kierunkowej l : x x 0 x 1 x 0 = y y 0 y 1 y 0 = z z 0 z 1 z 0 Równanie płaszcyzny przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze normalnym n = [A, B, C] : A(x x 0 ) + B(y y 0 ) + C(z z 0 ) = 0 Niech P 1 = (x 1, y 1, z 1 ), P = (x, y, z ) i P 3 = (x 3, y 3, z 3 ) będą trzema ustalonymi niewspółliniowymi punktami i P = (x, y, z) będzie dowolnym punktem płaszczyzny π Wówczas równanie na wyznaczenie płaszczyzny: x x 1 y y 1 z z 1 π : x x 1 y y 1 z z 1 x 3 x 1 y 3 y 1 z 3 z 1 = 0 1

2 Albo wektor normalny tej płaszczyzny wyznaczamy z P 1 P i j k P 1 P 3 = x x 1 y y 1 z z 1 x 3 x 1 y 3 y 1 z 3 z 1 Odległość punktu P 0 = (x 0, y 0, z 0 ) od płaszczyzny π : Ax + By + Cz + D = 0 wyraża się wzorem: d(p 0, π) = Ax 0 + By 0 + Cz 0 + D A + B + C Rozważmy teraz dwie równoległe płaszczyzny π 1 : Ax + By + Cz + D 1 = 0 oraz π : Ax + By + Cz + D = 0 Wzór na odległość pomiędzy nimi ma postać: d(π 1, π ) = D D 1 A + B + C Odległość punktu P 0 = (x 0, y 0, z 0 ) od prostej k : przechodzącej przez punkt P 1 = (x 1, y 1, z 1 ) o wektorze v wyraża się wzorem: d(p 0, k) = P 0 P 1 v v Wzór na odległość pomiędzy dwiema prostymi skośnymi k i l o wektorach odpowiednio v, u i przechodzącymi odpowiednio przez punkty P 0 i P 1 ma postać: d(k, l) = ( v, u, P 0 P 1 ) v u Wzór na odległość punktu P 0 od płaszczyzny przechodzącej przez P 1 o wektorze normalnym n ma postać: d(p 1, π) = P 0 P 1 n n

3 1 Znajdź równanie płaszczyzny: Zadania na ćwiczenia a) przechodzącej przez punkt P 0 = (3, 1, ) i równoległej do płaszczyzny x y+3z+5 = 0; b) przechodzącej przez dwa punkty P 1 = (0,, 1), P = ( 1, 0, 1) i prostopadłej do płaszczyzny o równaniu x + y z = 0; c) przechodzącej przez punkty P 1 = (1, 3, 5), P = (1, 0, 1), P 3 = (0, 4, 1); d) prostopadłej do wektora AB, gdzie A = (1, 4, ), B = (5,, ) i przechodzącej przez środek odcinka AB; e) przechodzącej przez punkt P 0 = (,, 1, 0) i równoległej do płaszczyzny w której leży trójkąt ABC, gdzie A = (0, 0, 0), B = (1,, 3), C = ( 1, 3, 5); f) przechodzącej przez punkt P 0 = (4, 3, 1) i równoległej do wektorów u = [1, 1, 0], v = [0, 1, 1]; 4x 3y + z + 5 = 0 g) przechodzącej przez punkt P 0 = (6,, 1) i prostopadłej do prostej 5x + 8y 7z + = 0; h) zawierającej punkt P 0 = (1,, 3) i prostopadłej do płaszczyzn o równaniach x 3y + z 7 = 0, x y z + 3 = 0; i) przechodzącej przez punkt P 0 = (4,, 1) i oś Ox; j) zawierającej punkty P 1 = (4, 0, 1) i P = (, 3, 1) i równoległej do osi Oy; k) płaszczyzn równoległych do płaszczyzny 6x 3y z + = 0 i odległych od niej o 5; l) zawierającej punkt (, 0, 7), która jest prostopadła do płaszczyzny x + 5z = 0 i jednocześnie równoległa do prostej x 1 = y = z ; 1 3 m) przechodzącej przez oś Oy i tworzącej z płaszczyzną x z + 4 = 0 kąt π; y 3 n) przechodzącej przez punkty P 1 = (1, 3, 4), P = (, 0, 1) i prostopadłej do płaszczyzny xoz; Znajdź równanie prostej a) przechodzącej przez punkty P 1 = (1, 0, ) i P = (, 1, 1); b) przechodzącej prze punkt P 0 = (1, 3, 4) i równoleglej do wektora u = [ 3, 0, 1]; c) przechodzącej przez punkt P 0 = (5,, 0) i prostopadłej do płaszczyzny x+6y z+5 = 0; d) przechodzącej przez punkt P 0 = ( 1, 1, 1) i prostopadłej do wektorów u = [, 0, 1] i v = [ 3,, 1], 3x + y = 0 e) przechodzącej przez środek układu współrzędnych i równoległej do prostej x z + 5 = 0; x = + 3t f) przechodzącej przez punkt P 0 = (4, 1, ) i przecinającej prostą y = 1 + t pod z = 1 t kątem prostym; 3

4 g) 3x + 5y 4z 1 = 0 4x + y + z + 1 = 0 h) przecinającej proste: w postaci kanonicznej i parametrycznej; x y + z = 1 x + y z = x = 3t i y = t z = 1 + t pod kątem prostym; = y+3 1 = z 1 i x 1 i) przechodzącej przez punkt A = (1,, 1) i przecinającej dwie proste: x = y = z ; 1 3 x 1 j) przechodzącej przez punkt P 0 = (, 0, 1) przecinającą prostą l 1 : = y = z+ 1 prostopadłą do prostej l : x+ = y 4 = z Znaleźć punkt wspólny prostej : x+ = y = z Znaleźć rzut prostokątny i płaszczyzny x + y = 0 a) punktu P 0 = (4, 3, 1) na płaszczyznę o równaniu x + y z 3 = 0; x+ b) prostej l : = y 1 = z na płaszczyznę x z + 3 = 0; 1 1 c) prostej l 1 : x = y = z na płaszczyznę π, która to przechodzi przez prostą 3 1 x + 3y + z 8 = 0 l : x + 4y z + 3 = 0; 5 Obliczyć odległość a) punktu P 0 = (5, 8, 1) od płaszczyzny 4x 3z = 0; b) punktu P 0 = (, 1, 1) od prostej x+1 1 = y 1 1 = z ; c) prostych równoległych π 1 : 3x 4y + 11z = 0 i π : 3x 4y + 11z + 3 = 0; 6 Oblicz miarę kąta między a) prostą l 1 przechodzącą przez punkty A = (3, 0, 1) i B = (, 1, ) a prostą zawierającą punkty l C = (, 1, 1) i D = (3, 1, 3); x = + 3t b) między prostą y = 1 a płaszczyzną daną równaniem z = t x y + z 1 = 0; c) płaszczyznami π 1 : x y z 4 = 0 i π : x + y z 5 = 0; 7 Znajdź współrzędne punktu symetrycznego do punktu P 0 = (3, 0, 1) względem prostej x 5 y+1 = z Zbadaj wzajemne położenie prostych l 1 i l w zależności od przypadku wyznacz odległość, punkt przecięcia, równanie płaszczyzny do której należą: 3 i = 4

5 a) l 1 : x 9 = y+ = z x i l : = y+7 = z 9 x = 3 t x = 1 4t b) l 1 : y = + t i l : y = 1 + t z = 1 3t z = 3 6t x + 3y z 1 = 0 x + 5y + 4z 3 = 0 c) l 1 : i l : d) l 1 : x + y 3z = 0 x + y z = 0 x + y 3z = 0 i l : x + y + z 1 = 0 x + y + z 3 = 0 x + y + z = 0 9 Zbadaj wzajemne położenie płaszczyzny π i prostej l w zależności od przypadku wyznacz odległość, punkt przecięcia: x = t a) l : y = 1 + t i π : x + y 4z 0 = 0 z = 4 + 3t x = + t b) l : y = 1 t i π : x + y z + 5 = 0 z = 3 t x y + z 1 = 0 c) l : i π : x + y z 1 = 0 x + 3y 3z 1 = 0 5

Ekoenergetyka Matematyka 1. Wykład 6.

Ekoenergetyka Matematyka 1. Wykład 6. Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

1 Geometria analityczna

1 Geometria analityczna 1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Prosta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP

Prosta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP JJ, IMiF UTP 16 PŁASZCZYZNA W R 3 Równanie płaszczyzny prostopadłej do wektora n = [A, B, C] i przechodzącej przez punkt P 1 (x 1, y 1, z 1 ): A(x x 1 ) + B(y y 1 ) + C(z z 1 ) = 0. n = [A, B, C] P 1 (x

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. 4. Proste równoległe i prostopadłe Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. Jeśli przecinają się w dowolnym miejscu, i to pod kątem prostym,

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji

Bardziej szczegółowo

Krzywe stożkowe Lekcja VI: Parabola

Krzywe stożkowe Lekcja VI: Parabola Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α

Bardziej szczegółowo

Krzywe stożkowe Lekcja VII: Hiperbola

Krzywe stożkowe Lekcja VII: Hiperbola Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA I. Wykresy funkcji 1. Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y=ax+b. Jakie znaki mają współczynniki a i b? A. a

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto. MATURA 2012 Powtórka do matury z matematyki Część VIII: Geometria analityczna ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już ósmą z dziesięciu części materiałów powtórkowych

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

Ostatnia aktualizacja: 30 stycznia 2015 r.

Ostatnia aktualizacja: 30 stycznia 2015 r. Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 Niech r ( t ) [ x( t), y( t), z( t)], t I ( r ( t ) x( t) i y( t) j z( t) k, t I ) będzie równaniem wektorowym krzywej w R 3. Definicja Krzywą o równaniu r ( t ) [ a cost,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

WSTĘP DO ANALIZY I ALGEBRY, MAT1460 WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest

Bardziej szczegółowo

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 21. krąg o środku S = (3, 2) leży wewnątrz okręgu o równaniu (x 6) 2 + (y 8) 2 = 100 i jest do niego styczny. Wyznacz równanie

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR

TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR W układzie współrzędnych zaznaczmy dowolny punkt A = (x, y) oraz wektor u r = [p, q]. Po przesunięciu punktu A o wektor u r otrzymamy punkt

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Wskazówki do zadań testowych. Matura 2016

Wskazówki do zadań testowych. Matura 2016 Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

Inwersja w przestrzeni i rzut stereograficzny zadania

Inwersja w przestrzeni i rzut stereograficzny zadania Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym S t r o n a ZBIÓR ZADAŃ Matematyczne ABC maturzysty na poziomie podstawowym Każdy uczeń, który kończy szkołę ponadgimnazjalną i chce przystąpić do matury, zobowiązany jest do zdawania egzaminu z matematyki

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo