Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g."

Transkrypt

1 Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych szczurów. Wyiki podae są w postaci szeregu szczegółowego, ie obserwujemy wartości skrajych (odstających), jako miarę przeciętą wybieramy więc średią arytmetyczą: x x i , [g] i Odpowiedź: Przecięta masa ciała w grupie przebadaych szczurów wyosi 86, g. Zadaie Średia liczba puktów pewego testu uzyskaa a I roku studiów grupy A wyiosła 4,, a grupy B: 3,. Jaka jest przecięta liczba puktów testu liczoa dla dwóch grup łączie, jeżeli grupa B była,5-krotie licziejsza? Poieważ obie grupy mają różą liczebość, koiecze jest zastosowaie średiej arytmetyczej ważoej, w której wagami będą liczebości poszczególych grup i. Przyjmując, że pierwsza grupa ma liczość przecięta wyosi:, druga ma liczość, 5, wartość x x x x 4, 3,,5,5 i i i i i Odpowiedź: Przecięta liczba puktów wyosi 3,54. 3,54 Zadaie 3 Oceioo stężeie peptydu atriuretyczego typu B (NT-pro BNP) w surowicy osób z ostrym zespołem wieńcowym uzyskując astępujące wyiki: 0, 0, 0, 0, 0, 0, 0 3, 0 3, 0 3, 0 4, 0 4, 0 4, 0 5, 0 5 [pg/ml]. Wyzacz przecięty poziom stężeia tego peptydu w tej grupie chorych. Poieważ rozkład wyików wykazuje iesymetryczość (prawoskośość), prawy ogo histogramu jest zaczie dłuższy i maleje woliej iż jego lewy ogo, a poadto wartości Opracowaie: Zakład Statystyki SUM

2 stężeia NT-pro BNP są wielokrotościami poprzedich (różią się o rząd jedostek), jako wartość przeciętą zastosujemy średią geometryczą dla szeregu szczegółowego: x G x x... x , 8 4 Odpowiedź: Przecięte stężeie NT-pro BNP w surowicy osób z ostrym zespołem wieńcowym wyosi 78,8 [pg/ml]. Zadaie 4 Jedo z przedsiębiorstw biotechologiczych posiada cztery zakłady a tereie kraju. W każdym z zakładów wytwarzay jest te sam wyrób, ale średia wydajość pracy w tych zakładach jest róża. W pierwszym zakładzie wyosi 0 szt./h, w drugim szt./h, trzecim 8 szt./h, atomiast w zakładzie czwartym wydajość ta wyosi 5 szt./h. Jaka jest przecięta wydajość w całym przedsiębiorstwie? Poieważ iformacje o wydajości pracy w każdym z zakładów podae są w przeliczeiu a stałą jedostkę iej zmieej, więc skorzystamy tutaj do obliczeia przeciętej wydajości z wzoru a średią harmoiczą dla szeregu szczegółowego: M H x i i ,9 0,9 Odpowiedź: Przecięta wydajość w całym przedsiębiorstwie wyosi 0,9 szt./h. Zadaie 5 Grupę 0 absolwetów pewej uczeli zbadao ze względu średią oce ze studiów. Trzyastu studetów uzyskało oceę dst, piętastu dst, trzydziestu db, dwudziestu trzech bdb, pozostali uzyskali oceę celującą. Wyzaczyć wartość przeciętą, mediaę oraz domiatę oce ze studiów. Odpowiedź: Dae zostały przedstawioe w postaci szeregu rozdzielczego puktowego, w którym ie występują dae odstające. Wartość przeciętą wyosi więc: x i x i i 0 mediaa Me 4, a domiata D , 3 Przecięta ocea ze studiów wyosiła 4,3, połowa studetów miała oceę miejszą lub rówą dobry, a połowa większą lub rówą dobry. Najczęstszą ocea była ocea dobra., Opracowaie: Zakład Statystyki SUM

3 Zadaie 6 Pewą próbę o liczebości 00, badao pod względem wzrostu, wagi i wieku. Uzyskao astępujące wyiki: Cecha As K x s Waga [kg] 0,8 0, Wiek [lata] 0,45 0, Wzrost [cm] 0,37 0,7 64 7,84 Która z cech charakteryzuje się: (odpowiedź uzasadij) a) Większym zróżicowaiem wyików? b) Miejszym skupieiem wokół średiej? c) Większą symetrią? Odpowiedź: a) Aby zbadać, która cecha charakteryzuje się większym zróżicowaiem wyików ależy obliczyć współczyik zmieości dla każdej cechy: V swaga = % 6% V s wiek = % % V swzrost = 7, % % Największym zróżicowaiem wyików charakteryzuje się cecha wiek (poieważ współczyik zmieości jest ajwiększy). b) Najmiejszym skupieiem wokół średiej charakteryzuje się cecha wzrost (poieważ Kurtoza jest ajmiejsza). c) Największą symetrią charakteryzuje się cecha waga (poieważ współczyik asymetrii jest ajmiejszy). Zadaie 7 Spytao grupę kobiet i mężczyz o tygodiowy czas poświęcoy przez ich a porządki domowe (w godziach) i uzyskao astępujące iformacje: Mężczyźi:, 3, 3, 3, 5, 3,,, 0, 0, 0,, 0,,, 0, 3, 4, 5, 4. Kobiety: 4, 6, 8, 8, 0, 0, 0, 6,, 6, 6, 6, 8, 0, 8, 8,, 6, 4, 8. a) Która ze zbiorowości charakteryzuje się większym rozproszeiem wyików? b) Ile co ajmiej godzi tygodiowo poświęca a porządki domowe co ajwyżej 75% badaych kobiet? x i i x i i x i x (x i x ) (x i x ) i ,5 4,65 3,5 -,5,35, ,5 0,05 0, ,85 0,75 3,65 4 8,85 3,45 6, ,85 8,5 6,45 Opracowaie: Zakład Statystyki SUM 3

4 c) Ile co i =0 x i i =43 (x i x ) i =5,55 ajwyżej godzi tygodiowo poświęca a porządki domowe co ajwyżej 5% badaych mężczyz? Odpowiedź: a) Mężczyźi: x = x i i i = 43 0 =,5 s = N (x i x ) i = 5,55 9 =,66 V s M = s x,66 00% = 00% 77%,5 Kobiety: x i i x i i x i x (x i x ) (x i x ) i 4 4-5, 7,04 7, , 0,4 40, ,,44 8, ,8 0,64,56,8 3,4 6, ,8 3,04 3, ,8 46,4 9,48 i =0 x i i =84 (x i x ) i =0, x = x i i i = 84 0 = 9, s = N (x i x ) i = 0, 9 = 3,5 V s K = s x 3,5 00% = 00% 35% 9, Większym rozproszeiem wyików charakteryzuje sie zbiorowość dotycząca mężczyz (V sm > V sk ). b) Q 3 = x 5+x 6 = 0+ = 0,5 Co ajwyżej 75% badaych kobiet poświęca a porządki domowe co ajmiej 0,5 godziy tygodiowo. c) Q = x 5+x 6 = 0+7 = 3,5 Co ajwyżej 5% badaych mężczyz poświęca a porządki domowe co ajwyżej 3,5 godziy tygodiowo. Opracowaie: Zakład Statystyki SUM 4

5 Zadaie Zadaia domowe Aalizując wydajość pracy pewej brygady pracowików zaotowao astępujące ilości wyprodukowaych sztuk a godzię: 8; 5; 4; 3; 7; 9; 7; 0; 7; 7; ; 8; 5; 6; 7; 7; 7; 7; 6; 4; 5; 6; 6; ; 9; 0; 9; ; 0; 8. Uporządkować otrzymae dae tworząc szereg rozdzielczy puktowy. Dae przedstawić graficzie w postaci histogramu. Określić przeciętą oraz domiującą wydajość pracy. Określić ile sztuk produkuje więcej iż połowa pracowików. Na podstawie uzyskaych wyików określić czy rozkład daych jest skośy. Odpowiedź: x 6,4(3), Me 7, D 7. Zadaie Obserwowao pracę czterech robotików. Robotik A zużywał a wykoaie jedego elemetu mi, robotik B - 4 mi, robotik C - 6 mi, a robotik D - mi. Ile czasu zużywają średio badai roboticy a wykoaie jedego elemetu. Odpowiedź: Stąd jede elemet wykoyway jest w ciągu 4 miut. Zadaie 3 Alicja mieszka km od Uiwersytetu Medyczego. Jeżeli pogoda jest dobra (dzieje się tak z prawdopodobieństwem 0,6), idzie a zajęcia a piechotę z prędkością 5 km/h; w przeciwym razie jedzie rowerem z prędkością 0 km/h. Jaka jest wartość średia czasu dotarcia a zajęcia? Jaka jest średia prędkość Alicji a tej trasie? Odpowiedź: Średio Alicja pokouje drogę z domu a uczelię w czasie 6,8 miuty. Średia prędkość wyosi: V 7, 4 km h. Zadaie 4 W pewym przedsiębiorstwie produkcyjym przeprowadzoo badaie pracowików ze względu a staż pracy (w latach). Otrzymao staż dla mężczyz (średia ± odchyleie stadardowe) 43,0±,3 oraz dla kobiet 36,0±9,0. Przyjmując, że w przedsiębiorstwie było zatrudioych 500 kobiet oraz 500 mężczyz oceić przecięty staż pracy w tym przedsiębiorstwie. Odpowiedź: Przecięty staż pracy w tym przedsiębiorstwie wyosi 40,375 lat. Opracowaie: Zakład Statystyki SUM 5

6 Zadaie 5* Dla daych z zadaia poprzediego wyzaczyć odchyleie stadardowe przeciętego stażu pracy w całym przedsiębiorstwie. Odpowiedź: Odchyleie stadardowe przeciętego stażu pracy w tym przedsiębiorstwie wyosi,8 lat. Zadaie 6 Cea zabiegu mikrodermabrazji wykoywaego w różych gabietach w mieście X przedstawioo w tabeli. W Nowym gabiecie postaowioo a zasadach promocyjych wykoać 00 zabiegów, które zostaą sprzedae a zasadzie przedpłaty i sprzedaży grupowej. Wiadomo, że cea takiego zabiegu może być o 40% iższa od cey regularej. Jaka jest średia cea zabiegu mikrodermabrazji w mieście X i czy cea sprzedaży grupowej mieści się w graicach średia odchyleie stadardowe? Odpowiedź: Grupowa cea sprzedaży ie mieści się w przedziale 505,6 zł. Zadaie 7 W owopowstałym gabiecie przeprowadzoo akietę badającą zadowoleie klietów. Oceiao gabiet w skali 5. Najgorszą oceą była a ajwyższą 5. 30% klietów wystawiło piątkę, 40% przyzało czwórkę, 8 osób oceiło pracę gabietu a trójkę, a pozostali przyzali oceę dopuszczającą (). Średia oce wyiosła 3,9. Ilu klietów postawiło ajwyższą oceę? Odpowiedź: Najwyższą oceę wystawiło klietów. Opracowaie: Zakład Statystyki SUM 6

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Histogram: Dystrybuanta:

Histogram: Dystrybuanta: Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu

Wykład nr 2. Statystyka opisowa część 2. Plan wykładu Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Wybrane litery alfabetu greckiego

Wybrane litery alfabetu greckiego Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i

Bardziej szczegółowo

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

PODSTAWY BIOSTATYSTYKI ĆWICZENIA

PODSTAWY BIOSTATYSTYKI ĆWICZENIA PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Statystyka powtórzenie (I semestr) Rafał M. Frąk

Statystyka powtórzenie (I semestr) Rafał M. Frąk Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Projekt ze statystyki

Projekt ze statystyki Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...

Bardziej szczegółowo

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował:

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Statystyka Opisowa. w2: podstawowe miary. Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska. Poznań, 2015/16 aktualizacja 2017

Statystyka Opisowa. w2: podstawowe miary. Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska. Poznań, 2015/16 aktualizacja 2017 Statystyka Opisowa w2: podstawowe miary Jerzy Stefaowski Istytut Iformatyki Politechika Pozańska Pozań, 205/6 aktualizacja 207 STATYSTYKA OPISOWA Techiki wstępej aalizy daych i ich prezetacji: gromadzeie,

Bardziej szczegółowo

Statystyka i rachunek prawdopodobieństwa

Statystyka i rachunek prawdopodobieństwa Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną

Zadanie 8 Zbadano wiek czytelników pewnej biblioteki. Na tej podstawie wyznaczyć i zinterpretować średnią arytmetyczną Zadanie 1 Zbadano czas poświęcany przez 16 pasażerów kolejki podmiejskiej, w wybranym mieście wojewódzkim, na dotarcie z domu do pracy, otrzymując wyniki [min.]: 30; 30; 35; 40; 41; 60; 60; 60; 72; 72;

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

ZSTA LMO Zadania na ćwiczenia

ZSTA LMO Zadania na ćwiczenia ZSTA LMO Zadaia a ćwiczeia Efektywość estymatorów ieobciążoych Zadaie 1. Zakładamy, że badaa cecha X populacji ma rozkład Poissoa πλ, gdzie λ > 0 jest parametrem. Poadto, iech X = X 1, X,..., X będzie

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

Obserwacje odstające mają duży wpływ na średnią średnia nie jest odporna.

Obserwacje odstające mają duży wpływ na średnią średnia nie jest odporna. Wykład 8. Przedziały ufości dla średiej Średia a mediaa Mediaa dzieli powierzchię histogramu a połowy. Jest odpora ie mają a ią wpływu obserwacje odstające. Obserwacje odstające mają duży wpływ a średią

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

, dla n = 1, 2, 3, 4 : 2

, dla n = 1, 2, 3, 4 : 2 Ćwiczeia VI Uwagi do zadań -5 : W każdym z zadań proszę : A. arysować graf przejść i macierz itesywości B. podać graiczą itesywość zgłoszeń λ gr dla której system jest już iestabily C. obliczyć prawdopodobieństwa

Bardziej szczegółowo

2.1. Studium przypadku 1

2.1. Studium przypadku 1 Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.

Bardziej szczegółowo

Estymacja przedziałowa:

Estymacja przedziałowa: Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

KLINICZNE FORUM EKSPERTÓW EUROPY ŚRODKOWO-WSCHODNIEJ r.

KLINICZNE FORUM EKSPERTÓW EUROPY ŚRODKOWO-WSCHODNIEJ r. ul. Pukowca 15, 40-847 Katowice, POLSKA tel./fax: +48 / 32 / 259 83 99, +48 / 32 / 259 83 98, +48 / 32 / 259 83 96 KLINICZNE FORUM EKSPERTÓW EUROPY ŚRODKOWO-WSCHODNIEJ Ciężka Alergia, Astma i POChP itegrowaa

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Opracowanie i analiza materiału statystycznego 419[01].O1.04

Opracowanie i analiza materiału statystycznego 419[01].O1.04 MINISTERSTWO EDUKACJI NARODOWEJ Ewa Kawczyńska-Kiełbasa Opracowaie i aaliza materiału statystyczego 419[01].O1.04 Poradik dla uczia Wydawca Istytut Techologii Eksploatacji Państwowy Istytut Badawczy Radom

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś 1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Estymacja parametrów populacji

Estymacja parametrów populacji Estymacja parametrów populacji Estymacja parametrów populacji Estymacja polega a szacowaiu wartości parametrów rozkładu lub postaci samego rozkładu zmieej losowej, a podstawie próby statystyczej. Estymacje

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

Podstawowe pojęcia. Próba losowa. Badanie próby losowej

Podstawowe pojęcia. Próba losowa. Badanie próby losowej METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo