Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r"

Transkrypt

1 Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub sończoy. Poday ajpierw defiicję przestrzei etryczej ośrodowej i oówiy ila z jej własości. Defiicja 65 (przestrzei ośrodowej) Przestrzeń etryczą (, ρ) X azyway ośrodową, jeśli istieje zbiór co ajwyżej przeliczaly i gęsty w tej przestrzei, tj. istieje zbiór A X tai, że A jest co ajwyżej przeliczaly i Cl ( A ) = X. Zbiór, A o tóry owa w defiicji 65, azywa się często ośrodie przestrzei X. Przyład 66 (przestrzei ośrodowej) Przestrzeń eulidesowa (, ) R jest ośrodowa, gdyż przyjując A = Q łatwo widać, że A jest zbiore przeliczaly i poadto Cl( A ) = R. Twierdzeie 67 Obraz ciągły przestrzei ośrodowej jest przestrzeią ośrodową. Niech ( X, ρ ) będzie przestrzeią etryczą ośrodową, a (, ρ ) Y dowolą przestrzeią etryczą i iech f : X Y będzie dowolą fucją ciągłą. Bez straty ogólości ożey przyjąć, że f ( X ) = Y, tj. że fucja f odwzorowuje przestrzeń X a Y. Wybierzy jaiś, co ajwyżej przeliczaly zbiór A gęsty w przestrzei X. Oczywiście f ( A) jest zbiore co ajwyżej przeliczaly w przestrzei Y jao, że jest to obraz zbioru co ajwyżej przeliczalego A. Zostało wyazać, że f ( A) jest zbiore gęsty w przestrzei Y. Zgodie z twierdzeie 5 (a) wystarczy poazać, że biorąc dowoly iepusty zbiór U otwarty w przestrzei Y zbiór U f ( A) jest iepusty. Weźy zate dowoly iepusty zbiór U otwarty w przestrzei Y. Zbiór V = f ( U ) jest otwarty w X, gdyż fucja f jest ciągła (zob. twierdzeie 55 (a)) i iepusty w X, gdyż f jest odwzorowaie a. Poieważ zaś A jest gęsty w przestrzei X, więc (zob. twierdzeie 5 (a)) zbiór V A jest iepusty. Weźy x V A. May f ( x ) f ( V A) f ( V ) f ( A) = U f ( A), a to poazuje, że zbiór U f ( A) jest iepusty. Zbiór ( A) f jest zate zbiore co ajwyżej przeliczaly i gęsty w przestrzei Y, a to ozacza, że przestrzeń ( Y, ρ ) jest ośrodowa. Twierdzeie 68 Jeżeli w przestrzei etryczej (, ρ) x, y B taich, że y ośrodowa. x ay ( x, y) r X istieje ieprzeliczaly zbiór B o tej własości, że dla dowolych ρ, gdzie r jest pewą liczbą dodatią, to przestrzeń ta ie jest

2 Przypuśy wbrew tezie, że przestrzeń (, ρ) X jest ośrodowa. Niech A będzie zbiore co ajwyżej przeliczaly i gęsty w tej przestrzei, a B zbiore ieprzeliczaly o własości wspoiaej w założeiu twierdzeia. Rozważy rodzię zbiorów rozłącze. Istotie gdyby ta ie było, to istiałby put r R = K x, : x B. Zauważy, że zbiory tej rodziy są parai r r z X tai, że z K x, i K y, r r K x, K y, dla pewych x, y B. Wówczas r ρ z, < i z lub rówoważie ( x ) r ρ ( z, y ) <. Stąd zaś, biorąc pod uwagę ierówość trójąta dla ρ dostalibyśy: r ρ ( x, y ) ρ( x, z ) + ρ( z, y ) < < r, co jest jeda ieożliwe, gdyż a ocy założeia ( x, y) r wszystich x, y B. Weźy dowoly eleet rodziyr, tj. ulę twierdzeia 5 (a) ρ dla r K x, jedozaczie wyzaczoy eleet x B. Na ocy r r K x, A, a stąd istieje a x A tai, że a x K x,. A poieważ rodzia R słada się z różych eleetów, to ty say istieje różowartościowa fucja eleetowi f : R A, tóra ażdeu r K x, przyporządowuje put a x. To jest jeda ieożliwe, gdyż to by ozaczało, że ieprzeliczaly zbiór f ( R) jest podzbiore zbioru co ajwyżej przeliczalego A. Przestrzeń (, ρ) zate przestrzeią ośrodową. X ie jest Łatwo teraz podać przyład przestrzei, tóra ie jest przestrzeią ośrodową. Przyład 69 (przestrzei ie ośrodowej) Korzystając z twierdzeia 68 widziy, że przestrzeń dysreta ( R, ρ ) ie jest ośrodowa. Istotie, biorąc B = IQ widziy, że B jest zbiore ieprzeliczaly i że dla dowolych x, y B taich, że x y ay ( x, y) = = r ρ. Przejdziey teraz do zdefiiowaia i podaia ilu własości olejej lasy ważej lasy przestrzei etryczych, a iaowicie przestrzei etryczych zupełych. Defiicja 7 (przestrzei zupełej) Przestrzeń etryczą ( X, ρ) azyway zupełą, jeśli ażdy ciąg { } x eleetów tej przestrzei spełiający warue Cauchy ego jest zbieży (do putu tej przestrzei), tj. istieje put x X tai, że li = x. x

3 Przyład 7 (przestrzei zupełej) Z twierdzeia bezposredio otrzyujey, że ażda przestrzeń eulidesowa (, ρ ) R jest zupeła. e Poday teraz dwa waże w zastosowaiach twierdzeia, dotyczące przestrzei etryczych zupełych. Twierdzeie 7 (Catora) W przestrzei etryczej zupełej zstępujący ciąg iepustych zbiorów doiętych, tórych średice tworzą ciąg zbieży do zera, posiada doładie jede put wspóly. Niech ( X, ρ) będzie przestrzeią etryczą zupełą i { } F dowoly ciągie zstępujący iepustych zbiorów doiętych, tórych średice tworzą ciąg zbieży do zera. Dla ażdej liczby aturalej iech wybray eleete zbioru Cauchy ego. Niech > taie, że ( ) < ε F F. Poażey, że utworzoy w te sposób ciąg { } ε będzie dowolą liczbą dodatią. Poieważ li dia( ) = dia dla. Biorąc teraz, l N taie, że, l ay sąd ( ) ( ) ε ρ x dia F <, l x F F i x l F F, l x będzie x spełia warue F, więc istieje N x. Ciąg { x } spełia więc warue Cauchy ego, a poieważ przestrzeń (, ρ) zupeła, to ciąg te jest zbieży do pewego eleetu x F F, a poieważ x x = li, to a ocy twierdzeia 8 (a) x Cl( ) X jest x X. Ustaly N. Dla ay F. Poieważ zaś zbiór F jest doięty, więc zate iepusty. x F. Poazaliśy zate, że F x dla wszystich N, tj. I x F. Zbiór I F jest = = Łatwo teraz poazać, że I = x i y ależące do I = F słada się z doładie jedego putu. Istotie, gdyby istiały dwa róże puty F, to biorąc dowole N dostalibyśy ( ) = sup{ ρ ( x, y ): x, y X} ρ( x, y), co przeczy waruowi li dia( ) = F dia > F. Twierdzeie 7 (Baire a) Jeżeli (, ρ) X jest przestrzeią etryczą zupełą, to: (a) iloczy przeliczalej rodziy zbiorów otwartych i gęstych w X jest zbiore gęsty w X. (b) sua przeliczalej rodziy zbiorów doiętych i brzegowych w X jest zbiore brzegowy w X. (a) Niech G, G, G, K będą zbiorai otwartyi i gęstyi w przestrzei X. Musiy poazać, że zbiór I G = jest gęsty w przestrzei X. Weźy dowoly iepusty zbiór otwarty V w X. Poieważ zbiór V G jest

4 iepusty (gdyż G jest gęsty zob. twierdzeie 5 (a)) i otwarty jao iloczy dwóch zbiorów otwartych (zobacz uwaga (d)), więc zajdziey iepusty zbiór otwarty. V o średicy iejszej iż tai, że Cl( V ) V G I dalej, poieważ zbiór V G jest iepusty (gdyż G jest gęsty zob. twierdzeie 5 (a)) i otwarty jao iloczy dwóch zbiorów otwartych (zobacz uwaga (d)), więc zajdziey iepusty zbiór otwarty V o średicy iejszej iż tai, że Cl( V ) V G. Postępując ta dalej i biorąc iepusty zbiór otwarty V G zajdziey iepusty zbiór otwarty ciąg { V } iepustych zbiorów otwartych tai, że =I = Cl V o średicy iejszej iż tai, że Cl ( V ) V G Cl ( V ) V G i ( ) Niech K ( ). Poieważ zbiory ( ) V dia V < dla =,,, K Cl V są iepuste (gdyż (c)), o średicach tworzących ciąg zbieży do zera (gdyż ( Cl( V )) dia( V ) ( ) V G V ( V ) Cl. A zate istieje V są iepuste), doięte (zob. uwaga 8 dia = < ) oraz zstępujące (gdyż Cl V, N ), więc a ocy twierdzeia Catora (zob. twierdzeie 7) zbiór K jest jedoputowy, sąd iepusty. Dostajey zate I = ( V ) IV G = IV IG V I K = Cl G, = i po sorzystaiu z twierdzeie 5 (a), zbiór I = = = G jest gęsty w X. = (b) Niech F F,, K będą zbiorai doiętyi i brzegowyi w przestrzei X. Musiy poazać, że zbiór, F U = F jest brzegowy w przestrzei X. Rozważy zbiory: X F, X \ F, X \, K Oczywiście są oe otwarte \ F (jao dopełieia zbiorów doiętych) i gęste w przestrzei X, gdyż (zob. twierdzeie ). ( X \ F ) = X \ It( X \ ( X \ F )) = X \ It( F ) = X \ X Cl, dla =,,, K Korzystając teraz z (a) zbiór ( \ ) = I = X jest gęsty w X, a stąd F Cl X F ( X F ) \ U = Cl I \ = X, = = co wobec defiicji 5 zbioru brzegowego poazuje, że U = F jest zbiore brzegowy w przestrzei X. Defiicja 74 (zbiorów typu G δ i F σ ) Zbiór, tóry oża przedstawić w postaci suy przeliczalej ilości zbiorów doiętych, azyway zbiore typu F σ, a zbiór tóry oża przedstawić w postaci iloczyu przeliczalej ilości zbiorów otwartych, azyway 4

5 zbiore typu G δ. Przyład 75 (zbiory typu G δ i F σ ) (a) Łatwo zauważyć, że ażdy podzbiór przestrzei eulidesowej R postaci ( a, b), ( a, b], [ a, b) lub [ a, b], gdzie a, b R i a < b, jest zarówo zbiore typu F σ jai i G δ. (b) Poażey, że zbiór liczb wyierych Q jest zbiore typu zbiore typu F σ, a zbiór liczb iewyierych I Q jest G δ, jeśli zbiory te rozpatrywae są jao podzbiory przestrzei eulidesowej R. Poieważ zbiór liczb wyierych Q jest zbiore przeliczaly, więc ustawiając go w ciąg =U = Q { }. A poieważ ażdy ze zbiorów { } q wyierych Q jest zbiore typu { } q q q,, K dostajey, q q jest doięty (gdyż jest jedoputowy), to zbiór liczb F σ. I dalej, poieważ I = R \ Q = R \ { q} = I[ R \ { q} ] R \ są otwarte, to zbiór liczb iewyierych I Q jest zbiore typu G δ. U Q i zbiory (c) Wyorzystujac twierdzeie Baire a oża poazać, że zbiór liczb iewyierych I Q ie jest zbiore typu F σ (a stąd, że zbiór liczb wyierych Q ie jest zbiore typu = = G δ ). Istotie, gdyby zbiór liczb iewyierych I Q był zbiore typu F σ, to byłby suą przeliczalej ilości zbiorów doiętych, z tórych ażdy byłby ta aprawdę zbiore brzegowy, gdyż sa zbiór liczb iewyierych jest zbiore brzegowy. Poieważ zaś zbiór liczb wyierych jest suą przeliczalej ilości zbiorów jedoputowych, czyli doiętych i brzegowych, więc cała przestrzeń zupeła R (zob. przyład 7) dałaby się przedstawić jao sua przeliczalej ilości zbiorów doiętych i brzegowych. Zgodie z twierdzeie Baire a (zob. twierdzeie 7), byłaby oa zbiore brzegowy, tj. It( R ) =, a wiey, że ta ie jest. A zate zbiór liczb iewyierych I Q ie jest zbiore typu F σ, i co za ty idzie, zbiór liczb wyierych Q ie jest zbiore typu G δ. Koleje twierdzeia podają pewe cechy, tóre charateryzują przestrzeie etrycze zupełe i ich podzbiory. Twierdzeie 76 Jeżeli (, ρ) X jest przestrzeią etryczą zupełą, to ażdy jej doięty podzbiór M też staowi przestrzeń etryczą zupełą. Musiy poazać, że przestrzeń etrycza (, ρ) M jest zupeła, tj., że ażdy ciąg putów tej przestrzei spełiający warue Cauchy ego jest zbieży (do putu tej przestrzei). Weźy zate dowoly ciąg { x } putów przestrzei M spełiający warue Cauchy ego. Oczywiście ciąg te spełia rówież warue Cauchy ego w przestrzei szerszej, tj. w przestrzei ( X, ρ), a poieważ jest to przestrzeń zupeła, więc istieje x X tai, że li = x. Korzystając z twierdzeia 8 (a) x Cl( M ), a poieważ zbiór M jest x doięty, więc x M. 5

6 Twierdzeie 77 Niech ( X, ρ) będzie dowolą przestrzeią etryczą, a ( M, ρ) jej podprzestrzeią. Jeżeli (, ρ) przestrzeią zupełą, to M jest zbiore doięty w X. M jest Musiy poazać, że M jest doiety podzbiore przestrzei X, co wobec uwagi 8 (a) sprowadza się do poazaia, że Cl ( M ) M. Weźy zate dowoly Cl( M ) putów przestrzei M tai, że li x a poieważ przestrzeń etrycza (, ρ) x li = y dla pewego M x. Na ocy twierdzeia 8 (a) istieje ciąg { x } = x. Poieważ ciąg te jest zbieży, więc spełia warue Cauchy ego, M jest zupeła, więc jest o zbieży do pewego putu zbioru M, tj. y. Z jedozaczości graicy w przestrzei etryczej (, ρ) X (zob. twierdzeie 7 (b)) wosiy teraz, że y = x, a poieważ y M, to i x M. Iluzja Cl ( M ) M zate zachodzi, tj. zbiór M jest doięty w X. Wiose 78 Jeżeli (, ρ) X jest przestrzeią etryczą zupełą i X wtedy, gdy M jest doięty podzbiore przestrzei X. M, to przestrzeń (, ρ) M jest zupeła wtedy i tylo Wyia bezpośredio z twierdzeń 76 i 77. Uwaga 79 Uwzględiając wiose 78 i przyład 7 dostajey: podzbiór M przestrzei eulidesowej przestrzeń etryczą zupełą wtedy i tylo wtedy, gdy M jest doięty podzbiore tej przestrzei. R staowi Poday teraz defiicję odwzorowaia zwężającego i putu stałego, a po iej sforułujey bardzo waże w zastosowaiach twierdzeie Baacha o pucie stały. Defiicja 8 (odwzorowaia zwężającego i putu stałego) Fucję f : X Y, gdzie ( X, ρ ) i ( Y, ρ ) są przestrzeiai etryczyi, azyway odwzorowaie zwężający, jeśli istieje liczba (,) Put α taa, że dla dowolych putów x, x X spełioa jest ierówość ( f ( x ), f ( x )) αρ ( x x ) ρ., x X jest pute stały przeształceia f X X :, jeśli ( x) x f =. Na oiec poday bez dowodu (dowód oża zaleźć w wielu pozycjach do aalizy) jeszcze jedo bardzo waże w zastosowaiach twierdzeie Baacha o pucie stały. Twierdzeie 8 (Baacha o pucie stały) Jeżeli przestrzeń etrycza (, ρ) doładie jede put stały. X jest zupeła i f : X X jest odwzorowaie zwężajacy, to f a 6

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F. 15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego WYKŁD 4 3 Przestrzei Odwzorowaia Rząd acierzy Twierdzeie Croecera- Capellego 3 Przestrzeń Przestrzeń wetorowa Baza przestrzei wetorowej 78 (Przestrzeń ) Niech ozacza zbiór wszystich ciągów -eleetowych

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli. KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Fraktale - ciąg g dalszy

Fraktale - ciąg g dalszy Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Zajęcia nr. 2 notatki

Zajęcia nr. 2 notatki Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:

Bardziej szczegółowo

Liczby Stirlinga II rodzaju - definicja i własności

Liczby Stirlinga II rodzaju - definicja i własności Liczby Stirliga II rodzaju - defiicja i własości Liczby Stirliga II rodzaju ozaczae sybole S(, ) lub { oża defiiować jao współczyii w rozwiięciu gdzie { x x, 0 (1) 0 x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały

Bardziej szczegółowo

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Problem. Jak praktycznie badać jednostajną ciągłość funkcji? EAIiIB-Iormatya - Wyład 3- dr Adam Ćmiel miel@.agh.edu.pl Ciągłość uji w puie e. Fuję : azywamy iągłą w puie jeżeli Heie Cauhy Uwaga: Put ale ie musi być putem supieia zbioru. Jeżeli jest putem izolowaym

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a,, a będą dowolymi liczbami Sumę a + a + + a zapisuje się zazwyczaj w postaci (czytaj: suma od do a ) Za Σ to duża greca litera sigma,

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

5. Szeregi liczbowe. A n = A = lim. a k = lim a k, a k = a 1 + a 2 + a

5. Szeregi liczbowe. A n = A = lim. a k = lim a k, a k = a 1 + a 2 + a 5. Szeregi liczbowe Niech będzie day iesończoy ciąg liczbowy {a }. Ciąg A = azywamy ciągiem sum częściowych ciągu {a }. Jeżeli ciąg {A } jest zbieży, mówimy, że ciąg {a } jest sumowaly, a graicę a A =

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń. Materiały dydatyczne Mateatya Dysretna (Wyład 5 Podstawowe technii zliczania obietów obinatorycznych. Szufladowa zasada Dirichleta, Zasada włączeń i wyłączeń. Szufladowa Zasada Dirichleta. Jest rzeczą

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

Materiały do ćwiczeń z Analizy Matematycznej I

Materiały do ćwiczeń z Analizy Matematycznej I Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Ekonomia matematyczna - 2.1

Ekonomia matematyczna - 2.1 Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Wyk lad 1 Podstawowe techniki zliczania

Wyk lad 1 Podstawowe techniki zliczania Wy lad 1 Podstawowe techii zliczaia Wariacje bez powtórzeń Defiicja 1. Niech i bed a liczbami aturalymi taimi, że. Niech A bedzie dowolym zbiorem elemetowym. Każdy ciag różowartościowy a 1,..., a d lugości

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)

Bardziej szczegółowo

1. Miara i całka Lebesgue a na R d

1. Miara i całka Lebesgue a na R d 1. Miara i całka Lebesgue a a R d 1. Miara. Mówimy, że rodzia podzbiorów S zbioru Ω jest σ-ciałem, jeśli wraz z każdym zbiorem zawiera oa jego dopełieie i jest zamkięta a sumowaie przeliczalych podrodzi.

Bardziej szczegółowo

Przestrzenie sygnałów

Przestrzenie sygnałów Przestrzeiesygałów Przestrzeń metrycza Przestrzeie Rozważmy dowoly zbiór P oraz dowole elemety p, p, p3 P Jeżeli a parach elemetów zbioru P moża zdefiiować fucję (fucjoał) ρ, tai,że ( ) ( ) ρ p, p 0, ρ

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel Własośi zbiorów otwarth i domięth Tw. a) Suma dowolej ilośi zbiorów otwarth jest zbiorem otwartm. b) Iloz sońzoej ilośi zbiorów otwarth jest zbiorem otwartm. Dow. a) Mam rodzię zbiorów otwarth: U A s {

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14 Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

Szkic notatek do wykładu Analiza Funkcjonalna MAP9907

Szkic notatek do wykładu Analiza Funkcjonalna MAP9907 Szkic otatek do wykładu Aaliza Fukcjoala MAP9907 Prowadzący: prof dr hab Tomasz Dowarowicz Sporządził: Paweł Szołtysek Spis treści I Wstęp do Aalizy Fukcjoalej 0 Przestrzeie Metryka Kula 3 Zbiory otwarte

Bardziej szczegółowo

Bardzo lekkie wprowadzenie do metod zliczania

Bardzo lekkie wprowadzenie do metod zliczania Bardzo leie wprowadzeie do metod zliczaia Ryszard Rębowsi 12 listopada 2016 1 Wstęp Zacziemy od przedstawieia podstawowe metodologii wspomagaące proces zliczaia (MPZ). Poieważ celem tego procesu est stwierdzeie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 Aaliza Fukcjoala WPPT IIIr. semestr leti 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 NiechX ozaczaprzestrzeńbaacha,ax jejdual a(czyliprzestrzeńfukcjoa lów ograiczoych

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Kombinatorycznie o tożsamościach kombinatorycznych

Kombinatorycznie o tożsamościach kombinatorycznych Kombiatoryczie o tożsamościach ombiatoryczych Beata Bogdańsa, Szczeci Odczyt zawiera propozycję dydatyczą usystematyzowaej i samowystarczalej prezetacji tematu: Tożsamości dotyczace symbolu dwumieego.

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Zadanie 1.6. Niech n N, a R + \ N, a 2 = n. Wykazać, że a / Q. Zadanie 1.7. Wykazać następujące twierdzenia za pomocą indukcji matematycznej.

Zadanie 1.6. Niech n N, a R + \ N, a 2 = n. Wykazać, że a / Q. Zadanie 1.7. Wykazać następujące twierdzenia za pomocą indukcji matematycznej. . Liczby wymiere zasada idukcji matematyczej przekroje Dedekida Zadaie.. Niech A Q. Wykazać że jeśli istieje mi A odp. max A) to istieje if A odp. sup A) oraz if A = mi A odp. sup A = max A). Zadaie..

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

Liczby Stirlinga I rodzaju - definicja i własności

Liczby Stirlinga I rodzaju - definicja i własności Liczby Stiriga I rodzaju - defiicja i własości Liczby Stiriga I rodzaju ozaczae symboem s(, ) moża defiiować jao współczyii w rozwiięciu x s(, )x, 0 (1) 0 gdzie x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały

Bardziej szczegółowo

Silnie i symbole Newtona

Silnie i symbole Newtona Podróże po Imperium Liczb Część Silie i symbole Newtoa Adrzej Nowici Wydaie drugie, uzupełioe i rozszerzoe Olszty, Toruń, 202 SSN - 33(080-2.05.202 Spis treści Wstęp Silie 5. Iformacje o cyfrach................................

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

7. Różniczkowanie. x x. f (x 0 ) = df(x). dx x=x0 Pierwsze oznaczenie pochodzi od Lagrange a, a drugie od Leibniza.

7. Różniczkowanie. x x. f (x 0 ) = df(x). dx x=x0 Pierwsze oznaczenie pochodzi od Lagrange a, a drugie od Leibniza. 7 Różiczowaie Niech będzie daa fucja f oreśloa w pewym otoczeiu putu x 0 R Mówimy, że f jest różiczowala w x 0 (ma w x 0 pochodą), jeśli iloraz różicowy x f(x) f(x 0) x x 0 ma w pucie x 0 graicę Ozaczamy

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo