Pattern Classification
|
|
- Edward Turek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors and the publisher
2 Chapter 6: Wielowarstwowe sieci neuronowe (Sections ) Wprowadzenie Propagaca sygnałów i lasyfiaca Algorytm wsteczne propagaci błędów
3 Wprowadzenie 2 Cel: Klasyfiaca obietów poprzez uczenie charaterysty nieliniowych W wielu zadaniach liniowe funce dysryminuące daą zbyt duże wartości funci ryterialne Poprzednio, istotą rozwiązania był odpowiedni wybór zestawu funci nieliniowych Teoretycznie, nalepie byłoby zastosować ompletną postać funci dysryminuące, np. wielomian dowolnego rzędu; ale wiązałoby się to z oniecznością estymaci zbyt wielie liczby parametrów na podstawie stosunowo niewielie liczby przyładów z ciągu uczącego
4 3 Nie est znana metoda automatycznego doboru prawdziwe charaterystyi nieliniowe, eżeli nie dysponuemy żadną dodatową informacą o te charaterystyce Sieci neuronowe uczą się postaci charaterystyi nieliniowe na podstawie danych uczących
5 4
6 Operace ednoierunowe i lasyfiaca 5 3-warstwowa sieć neuronowa słada się z warstw: weściowe, uryte i wyściowe. Połączeniom pomiędzy olenymi warstwami odpowiadaą parametry (nazywane wagami), tórych wartości można modyfiować
7 6
8 7
9 8 W celu ułatwienia zapisu, do ażdego neuronu doprowadzane est dodatowe weście o wartości równe 1 Atywaca neuronu (wyście ego części liniowe): net = d d T xiw i + w 0 = xiw i w x, i= 1 i= 0 gdzie i oznacza numer weścia, numer neuronu w warstwie uryte; w i to waga połączenia między -tym neuronem warstwy uryte a i-tym weściem. Każdy neuron warstwy uryte zwraca sygnał wyściowy y będący nieliniową funcą ego atywaci, t: y = f(net )
10 Na poprzednim rysunu zilustrowano funcę progową 1 if net 0 f ( net) = sgn( net) 1 if net < 0 Funca f(.) nazywana est funcą atywaci lub nieliniowością neuronu. Istnieą różne bardzie ogólne postacie funce atywaci 9 Każdy neuron warstwy wyściowe wyznacza swoą atywacę, przy czym na ego weścia podawane są wyścia neuronów warstwy uryte: net n n T y w + w 0 = y w = w y, = 1 = 0 = H H gdzie oznacza numer neuronu warstwy wyściowe a n H est numerem neurony warstwy uryte
11 10 Neurony warstwy wyściowe realizuą nieliniową funcę ich atywaci, zwracaąc na wyściu sygnał: z = f(net ) W przypadu c wyść (las), można rozpatrywać sieć ao uład c funci dysryminuących z = g (x) i lasyfiuący obraz x na podstawie te funci, g (x) = 1,, c, tóra przymue nawięszą wartość dla danego x 3-warstwowa sieć neuronowa z wagami podanymi na rys. 6.1 rozwiązue problem XOR
12 11 Neuron warstwy weściowe y 1 oreśla granicę: 0 y 1 = +1 x 1 + x = 0 < 0 y 1 = -1 Neuron warstwy uryte y 2 oreśla granicę : 0 y 2 = +1 x 1 + x = 0 < 0 y 2 = -1 Neuron warstwy wyściowe zwraca sygnał z 1 = +1 y 1 = +1 and y 2 = +1 z = y 1 i nie y 2 = (x 1 lub x 2 ) i nie (x 1 i x 2 ) = x 1 XOR x 2
13 Operace ednoierunowe przypade c wyść 12 g ( n H d ( x) z = f w f w = 1 i= 1 = 1,...,c) i Warstwa uryta umożliwia użycie bardzie sompliowanych postaci nieliniowości, rozszerzaąc możliwości lasyfiatora x i + w 0 + w 0 (1) Można ta wybrać funcę atywaci, aby była ona ciągła i różniczowalna Można dobrać różne funce atywaci w warstwie uryte i wyściowe, a nawet przyąć, że ażdy neuron ma indywidualnie dobraną postać funci atywaci Dale przymiemy, że wszystie neurony sieci maą identyczną funcę atywaci
14 Zdolność obaśniaąca sieci wielowarstwowych 13 Pytanie: Czy 3-warstwowa sieć neuronowa opisana równaniem (1) może zrealizować dowolny zbiór reguł decyzynych? Odpowiedź: Ta(A. Kołmogorow) Każda ciągła funca może być z dowolną doładnością aprosymowana przez 3-wartwową sieć neuronową, maącą odpowiednią liczbę neuronów n H w warstwie uryte, odpowiednie postacie funci atywaci i prawidłowo dobrane wartości wag. g( x) 2n + 1 = = 1 δ ( ) n Σβ ( x ) x I (I = [01], ;n ) i i 2
15 14 Na weście ażdego z 2n+1 neuronów warstwy uryte δ podawana est suma d nieliniowych funci, edna na ażdą cechę x i Każdy neuron uryty zwraca wartość nieliniowe funci δ dla podanych weść Neuron wyściowy zwraca sumę władów wnoszonych przez neurony warstwy uryte Niestety twierdzenie Kołmogorowa nie dae żadnych wsazówe a dobrać postać nieliniowe funci atywaci do danych pomiarowych;
16 15
17 Algorytm wsteczne propagaci błędów (BP BacPropagation) 16 Każda funca wiążąca weście z wyściem może być zrealizowana w postaci 3-warstwowe sieci neuronowe To twierdzenia ma dużą wartość, ale tylo dla teorii, ponieważ nie mówi nic o postaciach funci atywaci, liczbach neuronów w poszczególnych warstwach o ani wartościach wag sieci.
18 17
19 18 Dale supimy się na zadaniu doboru wartości wag sieci na podstawie ciągu uczącego W sieci 3-warstowe łatwo est ustalić związe między błędem (a zarazem wyściem) i wagami warstwy uryte Algorytm BP pozwala wyznaczyć błędy popełniane przez neurony warstwy uryte, co ułatwia oreślenie reguły uczenia wag połączeń między weściami sieci i neuronami warstwy uryte (the credit assignment problem)
20 19 Wyróżniamy dwa tryby działania sieci: Propagaca sygnałów Propagaca sygnałów polega na podawaniu na weście sieci obrazu i przetwarzaniu sygnałów przez olene warstwy sieci aż do e wyścia (bez cyli) Uczenie Uczenie z nauczycielem polega na pobudzaniu weścia sieci wzorcem z ciągu uczącego a następnie taie modyfiaci wartości wag, aby zmnieszyła się różnica między wyściem sieci a prawidłowym wyściem, odpowiadaącym podanemu wzorcowi
21 20
22 Uczenie sieci neuronowe 21 Niech t będzie -tym prawidłowym wyściem sieci a z -tym wyściem obliczonym przez sieć, = 1,, c, w to wetor wszystich wag sieci Błąd uczenia: c J ( w) = ( t z ) = t z 2 2 Algorytm BP est oparty na metodzie gradientu prostego (numeryczna metoda optymalizaci) Początowe wartości wag są dobierane losowo a modyfiue się e zgodnie z ieruniem, w tórym błąd malee: w = 1 J = η w 2
23 22 gdzie η to współczynni uczenia wpływaący na wielość modyfiaci wartości wag: w(m +1) = w(m) + w(m) gdzie m est m-tym obrazem prezentowanym sieci Błąd popełniany przez neurony warstwy wyściowe: gdzie δ J w = J = net J net est wrażliwością -tego neuronu i opisue wpływ atywaci na zmiany błędu: net. w = δ net w δ = J net = J z z. = ( t z ) f '( net ) net
24 23 Ponieważ net = w T y, to: net w = y Wniose: reguła uczenia (reguła atualizaci wag) dla wag połączeń między warstwą wyściową i urytą est następuąca: w = ηδ y = η(t z ) f (net )y Błąd popełniany przez neurony warstwy uryte J w i = J y y. net net. w i
25 24 Jednaże, Analogicznie a poprzednio, definiuemy wrażliwość neuronu warstwy uryte: co oznacza, że: wrażliwość neuronu warstwy uryte est sumą wrażliwości powiązanych z nim neuronów warstwy wyściowe, ważoną przez wagi w tych połączeń i przesalowaną przez f (net ) Wniose: reguła uczenia dla wag połączeń między warstwą urytą i weściową est następuąca: = = = = = = = = c c c c w net f z t y net net z z t y z z t z t y y J ) '( ) (. ) ( ) ( ) ( 2 1 = c w net f 1 ) ( ' δ δ [ ] i i i x net f w x w δ δ η δ η ) '( Σ = =
26 25 Algorytm BP: Begin initialize n H ; w, criterion θ, η, m 0 do m m + 1 x m randomly chosen pattern w i w i + ηδ x i ; w w + ηδ y until J(w) < θ return w End
27 Kryterium stopu 26 Algorytm BP ończy działanie, gdy zmiany wartości funci ryterialne J(w) są mniesze od przyętego progu θ Istnieą inne ryteria stopu, przydatne w różnych sytuacach Dotychczas rozważaliśmy błąd lasyfiaci dla poedynczego obrazu. Ja oreślić błąd dla całego ciągu uczącego? Całowity błąd dla ciągu uczącego est sumą błędów popełnianych dla n poedynczych obrazów J = n p= 1 J p (1)
28 27 Kryterium stopu (ciąg dalszy) Modyfiuąc wagi, zmnieszamy błąd dla bieżącego wzorca, ryzyuąc zwięszenie błędów dla pozostałych wzorców Jedna po wielu iteracach całowity błąd (1) będzie się zmnieszać z bardzo dużym prawdopodobieństwem
29 28 Krzywe uczenia Na początu procesu uczenia błąd dla ciągu uczącego est duży; w tracie olenych iteraci ten błąd stae się mnieszy Przebieg błędu (rzywa uczenia) dla wybranego wzorca zależy od liczby wzorców w ciągu uczącym i zdolności obaśniaące (np. liczba wag) sieci Średni błąd dla niezależnego ciągu testuącego est zawsze więszy od błędu dla ciągu uczącego i może się zarówno zmnieszać a i zwięszać w tracie procesu uczenia Ciąg walidacyny pomaga w podęciu decyzi o zatrzymaniu procesu uczenia; chcemy uninąć nadmiernego dopasowania sieci do danych i zmnieszenia zdolności lasyfiatora do generalizowania zatrzymuemy proces uczenia po osiągnięciu minimum błędu dla ciągu walidacynego
30 29
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
METODA WSTECZNEJ PROPAGACJI BŁĘDU
Nowoczesne technii informatyczne - Ćwiczenie 5: UCZENIE WIELOWARSTWOWEJ SIECI JEDNOKIERUNKOWEJ str. Ćwiczenie 5: UCZENIE SIECI WIELOWARSTWOWYCH. METODA WSTECZNEJ PROPAGACJI BŁĘDU WYMAGANIA. Sztuczne sieci
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 8. SZTUCZNE SIECI NEURONOWE INNE ARCHITEKTURY Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SIEĆ O RADIALNYCH FUNKCJACH BAZOWYCH
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
A4: Filtry aktywne rzędu II i IV
A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek
Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,
Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.
emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
Widzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Indukcja matematyczna
Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH
MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa
A. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
10. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966)
1. Podstawowy model potou ruchu porównanie różnych modeli 1. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966) 1.1. Porównanie ształtu wyresów różnych unci modeli podstawowych Jednym
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy
3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 1 2 SZTUCZNE SIECI NEURONOWE cd 3 UCZENIE PERCEPTRONU: Pojedynczy neuron (lub 1 warstwa neuronów) typu percep- tronowego jest w stanie rozdzielić przestrzeń obsza-
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
ZASTOSOWANIE ADAPTACYJNEJ SIECI FALKOWEJ DO REGULACJI PRĘDKOŚCI SILNIKA PRĄDU STAŁEGO
Prace Nauowe Instytutu Maszyn, Napędów i Pomiarów Eletrycznych Nr 69 Politechnii Wrocławsie Nr 69 Studia i Materiały Nr 33 2013 Piotr DERUGO*, Krzysztof SZABAT* sieć falowa, fali, sieci neuronowe ułady
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Zastosowania programowalnych układów analogowych isppac
Zastosowania programowalnych uładów analogowych isppac 0..80 strutura uładu "uniwersalnego" isppac0 ułady nadzorujące na isppac0, 30 programowanie filtrów na isppac 80 analiza częstotliwościowa projetowanych
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność
BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
SID Wykład 8 Sieci neuronowe
SID Wykład 8 Sieci neuronowe Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Sztuczna inteligencja - uczenie Uczenie się jest procesem nastawionym na osiaganie rezultatów opartych o
Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
ANALIZA WIELOKRYTERIALNA
ANALIZA WIELOKRYTERIALNA Dział Badań Operacyjnych zajmujący się oceną możliwych wariantów (decyzji) w przypadu gdy występuje więcej niż jedno ryterium oceny D zbiór rozwiązań (decyzji) dopuszczalnych x
4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)
256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
9. Sprzężenie zwrotne własności
9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób
Wzmacniacz tranzystorowy
Wzmacniacz tranzystorowy 5 Wydział Fizyki UW Pracownia Fizyczna i Elektroniczna - 2 - Instrukca do ćwiczenia Wzmacniacz tranzystorowy 5 I. Cel ćwiczenia Celem ćwiczenia est zapoznanie się z tranzystorem
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera
ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU
Mirosław Tomera Aademia Morsa w Gdyni Wydział Eletryczny Katedra Automatyi Orętowej ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU W pracy przedstawiona została implementacja sieci neuronowej
ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305
ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305 Henry Boryń Politechnia Gdańsa ODSTĘPY IZOLACYJNE BEZPIECZNE Zadania bezpiecznego odstępu izolacyjnego to: ochrona przed bezpośrednim
(U.3) Podstawy formalizmu mechaniki kwantowej
3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.
Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.
Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
2.4. Algorytmy uczenia sieci neuronowych
2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.
Artur Kasprzycki, Ryszard Knosala Politechnika Opolska, Katedra InŜynierii Produkcji artkasp@polo.po.opole.pl
MODELOWANIE ROZMYTE WIELOKRYTERIAEJ OCENY TAKTYCZNEGO PLANU PRODUKCJI Streszczenie Artur Kasrzyci, Ryszard Knosala Politechnia Oolsa, Katedra InŜynierii Produci artas@olo.o.ole.l W artyule adany est rolem
7. Maszyny wektorów podpierajacych SVMs
Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.
Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Poszukiwanie optymalnego wyrównania harmonogramu zatrudnienia metodą analityczną
Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wieskiego, Warszawa, ul. Nowoursynowska 159 e-mail: mieczyslaw_polonski@sggw.pl Poszukiwanie optymalnego wyrównania
Colloquium 3, Grupa A
Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące
Linie wpływu w belkach statycznie niewyznaczalnych
EHANIKA BUOWI inie wpływu w belach statycznie niewyznaczalnych Zadanie.: la poniższej beli naszicuj linie wpływu reacji A, B i. Za pomocą metody przemieszczeń wyznaczyć rzędne poszczególnych linii w połowie
Grupowanie sekwencji czasowych
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule
ALOKACJA ZASOBU W WARUNKACH NIEPEWNOŚCI: MODELE DECYZYJNE I PROCEDURY OBLICZENIOWE
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 1 2007 Helena GASPARS ALOKACJA ZASOBU W WARUNKACH NIEPEWNOŚCI: MODELE DECYZYJNE I PROCEDURY OBLICZENIOWE Sformułowano modele optymalizacyne, maące zastosowanie
wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz
Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno
Restauracja a poprawa jakości obrazów
Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy