VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Wielkość: px
Rozpocząć pokaz od strony:

Download "VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa."

Transkrypt

1 VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w sensie Lapunowa i asymptotycznej stabilności zostało wprowadzone w rozdziale 1 części III (definicja 1.1). W rozdziale 2 części III zbadaliśmy stabilność punktów krytycznych układów liniowych o stałych współczynnikach na płaszczyźnie. W rozdziale 1 części IV w oparciu o twierdzenie Grobmana-Hartmana udało się określić stabilność punktów osobliwych równania nieliniowego x = f(x) na płaszczyźnie w przypadku, gdy punkty te są hiperboliczne. Obecnie przejdziemy do badania stabilności rozwiązań układów równań w przestrzeni R n. Przypomnijmy pojęcie stabilności i asymptotycznej stabilności rozwiązania ϕ(t; p) równania x = f(t, x) z f : R 2 R przechodzącego przez x(0) = p w oparciu o interpretacją geometryczną. Rys. Rozważamy równanie (1.1) x = f(t, x), gdzie f : I Q R n, I R - przedział na prostej, Q R n - otwarty podzbiór przestrzeni R n. Załóżmy, że f spełnia warunki, przy których dla każdego punktu p Q istnieje dokładnie jedno rozwiązanie zagadnienia x = f(t, x), x(0) = p, oznaczane przez ϕ(t; p). Dodatkowo przyjmijmy, że f(t, 0) = 0 dla t 0. Wówczas p = 0 jest punktem równowagi układu (1.1) i funkcja ϕ(t; 0) 0 jest stałym rozwiązaniem równania (1.1), które dalej będziemy też określać mianem rozwiązania trywialnego. Krzywa całkowa rozwiązania trywialnego pokrywa się z osią czasu t, zaś trajektoria fazowa składa się oczywiście tylko z punktu {0}. Zauważmy, że badanie stabilności dowolnego rozwiązania danego układu można sprowadzić do badania stabilności rozwiązania trywialnego pewnego układu przekształconego. Istotnie, niech ϕ(t; p) będzie rozwiązaniem układu (1.1), tzn. ϕ (t; p) = f(t, ϕ(t; p)). 1

2 Zdefiniujmy funkcję y(t) następująco skąd x(t) = y(t) + ϕ(t; p). Wówczas (1.2) y(t) := x(t) ϕ(t; p), y (t) = x (t) ϕ (t; p) = f(t, x(t)) ϕ (t; p) = f(t, y(t) + ϕ(t; p)) ϕ (t; p). Zatem przez podstawienie (1.2) sprowadziliśmy układ (1.1) z niewiadomą funkcją x(t) do układu y = f(t, y + ϕ(t; p)) ϕ (t; p) z funkcją niewiadomą y(t), przy czym rozwiązanie ϕ(t; p) przekształca się na rozwiązanie trywialne y(t) 0. Powyższe przekształcenie prześledzimy na przykładzie układu liniowego (1.3) x = A(t) x + b(t), Załóżmy, że ϕ(t; p) jest rozwiązaniem szczególnym układu (1.3). Podstawiając y(t) = x(t) ϕ(t; p) otrzymujemy y (t) = x (t) ϕ (t; p) = A(t) x(t) + b(t) ϕ (t; p) = = A(t) [y(t) + ϕ(t; p)] + b(t) ϕ (t; p) = = A(t) y(t) + A(t) ϕ(t; p) + b(t) ϕ (t; p) = A(t) y(t). Zatem układ liniowy niejednorodny (1.3) został przekształcony w układ jednorodny y = A(t) y z taką samą macierzą A(t). Stąd wynika następujące twierdzenie. Twierdzenie 1.1. Rozwiązanie ϕ(t; p) układu x = A(t) x+b(t) spełniające warunek początkowy x(0) = p jest stabilne (asymptotycznie stabilne) wtedy i tylko wtedy, gdy rozwiązanie trywialne układu jednorodnego x = A(t) x jest stabilne (odpowiednio asymptotycznie stabilne). 2

3 Uwaga 1.2. Stabilność rozwiązania układu liniowego zależy wyłącznie od macierzy A(t). Rozważmy układ liniowy jednorodny o stałych współczynnikach (1.4) x = A x, gdzie A = [a ij ] n n. Rozwiązania układu (1.4) zależą od wartości własnych macierzy A, czyli pierwiastków równania det (A λ I) = 0. Zatem własność stabilności rozwiązań również będzie zależała od tych wartości. Poniższe twierdzenie pozwala badać stabilność rozwiązań układu (1.4). Twierdzenie 1.3. (i) Jeżeli wszystkie wartości własne macierzy A mają ujemne części rzeczywiste, to każde rozwiązanie układu (1.4) jest asymptotycznie stabilne. (ii) Jeżeli istnieje przynajmniej jedna wartość własna o dodatniej części rzeczywistej, to wszystkie rozwiązania układu (1.4) są niestabilne. (iii) Jeżeli macierz A ma jednokrotne wartości własne z zerową częścią rzeczywistą, tj. równe zero lub czysto urojone, zaś pozostałe wartości własne, jeśli istnieją, mają ujemne części rzeczywiste, to wszystkie rozwiązania układu (1.4) są stabilne, przy czym nie jest to stabilność asymptotyczna. Istotnie, funkcje x i (t) składające się na rozwiązanie układu (1.4) wyrażają się wzorami m (1.5) x i (t) = e λ k t P k (t), gdzie m oznacza ilość różnych pierwiastków równania charakterystycznego macierzy A, P k (t) jest wielomianem stopnia równego krotności wartości własnej λ k = α k + iβ k. Jeżeli α k = Re(λ k ) < 0 dla każdego k, to wszystkie składniki funkcji x i (t) dążą do zera, czyli rozwiązanie trywialne (punkt krytyczny x = 0), a wraz z nim wszystkie rozwiązania układu (1.4) są asymptotycznie stabilne. k=1 Jeśli istnieje λ k z α k = Re(λ k ) > 0, to moduł tego składnika funkcji x i (t), w którym ten pierwiastek charakterystyczny występuje, będzie dążył do nieskończoności, co oznacza, że rozwiązanie trywialne jest niestabilne. 3

4 Pierwiastkom charakterystycznym o ujemnych częściach rzeczywistych odpowiadają w rozwiązaniu (1.5) składniki dążące do zera, zaś pierwiastkom jednokrotnym o zerowej części rzeczywistej odpowiadają składniki postaci c 1 cos(β k t) + c 2 sin(β k t), jeśli λ k = ±iβ k, lub postaci stałej c k, jeśli λ k = 0. Funkcje x i (t) będą ograniczone w przedziale [, ), lecz nie będą dążyły do zera. Stąd rozwiązanie trywialne będzie stabilne, ale nie asymptotycznie stabilne. Rozważymy układ x = A x, gdzie A = α β 0 β α λ 3. W dalszej części tego rozdziału skoncentrujemy uwagę na badaniu stabilności rozwiązań równania liniowego jednorodnego rzędu n o stałych współczynnikach (1.6) x n + a 1 x n a n 1 x + a n x = 0, 0. Oczywiście funkcja stała x(t) 0 jest rozwiązaniem trywialnym równania (1.6). Ponadto wiemy, że równanie (1.6) można sprowadzić do układu n równań rzędu I-go. Istotnie, przyjmując otrzymujemy układ (1.7) czyli x = A x, gdzie x 1 = x, x 2 = x,..., x n = x n 1, (1.8) A = x 1 = x 2 x 2 = x 3. x n = a n a0 x 1 a n 1 x 2... a 1 x n, a n. a n a n a 1. 4

5 Wtedy det (A λ I) = λ n + a 1 λ n a n 1 λ + a n = 0. Oczywiście rozwiązanie trywialne równania (1.6) będzie stabilne, asymptotycznie stabilne, niestabilne, jeśli punkt krytyczny x = 0 R n układu (1.7) będzie odpowiednio stabilnym, asymptotycznie stabilnym, niestabilnym punktem osobliwym. O stabilności rozwiązania równania (1.6) decyduje więc lokalizacja pierwiastków równania λ n + a 1 λ n a n 1 λ + a n = 0. Sformułujemy twierdzenie, które pozwala badać stabilność punktu krytycznego x = 0 układu x = A x z macierzą A, której wszystkie wartości własne mają niezerowe części rzeczywiste. Przypomnijmy, że układ taki nazywamy hiperbolicznym, a jego punkt osobliwy x = 0 hiperbolicznym punktem stałym. Twierdzenie 1.4. (Hurwitza) Dane jest równanie o współczynnikach rzeczywistych gdzie > 0. (1.9) λ n + a 1 λ n a n 1 λ + a n = 0, Każdy pierwiastek równania (1.9) ma ujemną część rzeczywistą wtedy i tylko wtedy, gdy macierz a a 3 a 2 a a 5 a 4 a 3 a H = a n a n jest dodatnio określona. Uwaga 1.5. Macierz H nazywamy macierzą Hurwitza. Konstrukcja macierzy Hurwitza: Na głównej przekątnej wypisać współczynniki a 1,..., a n. W każdym wierszu wypisać współczynniki w kolejności malejących numerów, przy czym współczynniki o numerach mniejszych od 0 lub większych od n zastąpić zerami. 5

6 Uwaga 1.5. Można wykazać, że dodatniość wszystkich współczynników a i jest warunkiem koniecznym, jednak nie wystarczającym, stabilności rozwiązania trywialnego równania różniczkowego (1.6). Zbadamy stabilność rozwiązania trywialnego równania (a) x (5) + x (4) + 7 x (3) + 4 x + 10 x + 3 x = 0, Równanie (a) można równoważnie zapisać w postaci układu pięciu równań liniowych jednorodnych z macierzą A = , której równanie charakterystyczne ma postać (1) λ 5 + λ λ λ λ + 3 = 0. Mamy = 1, a 1 = 1, a 2 = 7, a 3 = 4, a 4 = 10, a 5 = 3. Wykorzystując wskazówkę z uwagi 1.5 konstruujemy macierz Hurwitza dla równania (1) i otrzymujemy H = Pozostaje ustalić określoność macierzy H. Obliczamy minory główne macierzy H i otrzymujemy, że wszystkie te minory są dodatnie, skąd wynika, że macierz H jest dodatnio określona. Zatem na mocy twierdzenia Hutwitza wszystkie wartości własne macierzy A mają ujemne części rzeczywiste, co implikuje asymptotyczną stabilność punktu krytycznego x = (0, 0, 0, 0, 0) układu liniowego z macierzą A, a stąd dalej asymptotyczną stabilność rozwiązania trywialnego x(t) 0 równania (a). 6

7 2. Funkcja Lapunowa. Rozważamy równanie (2.1) x = f(x), gdzie f : Q R n jest klasy C 1 na otwartym podzbiorze Q R n zawierającym początek układu współrzędnych. Zakładamy, że f(0) = 0, czyli x = 0 jest punktem osobliwym układu (2.1). Metoda badania stabilności punktu krytycznego układu (2.1) na podstawie układu zlinearyzowanego zawodzi w przypadku, gdy punkt ten nie jest hiperboliczny, czyli w sytuacji, gdy jakobian D f(0) ma wartości własne czysto urojone. Wówczas możemy odwołać się do metody zaproponowanej przez Lapunowa, która to metoda pozwala w niekórych przypadkach ustalić stabilność punktu równowagi, nawet gdy nie jest on punktem hiperbolicznym. Metoda ta opiera się na pewnej funkcji pomocniczej, tzw. funkcji Lapunowa. Przyjmijmy następujące definicje. Definicja 2.1. Funkcję rzeczywistą V : Q R, gdzie Q R n i 0 Q, będziemy nazywać dodatnio określoną (ujemnie określoną) w zbiorze Q, jeśli V (0) = 0 oraz dla każdego x Q \ {0} zachodzi warunek V (x) > 0 (odpowiednio V (x) > 0). Definicja 2.2. Funkcję rzeczywistą V : Q R, gdzie Q R n i 0 Q, będziemy nazywać dodatnio półokreśloną (ujemnie półokreśloną) w zbiorze Q, jeśli V (0) = 0 oraz dla każdego x Q \ {0} zachodzi warunek V (x) 0 (odpowiednio V (x) 0). Definicja 2.3. Pochodną funkcji V : Q R wzdłuż krzywej x(t) danej parametrycznie, tj. x(t) = (x 1 (t),..., x n (t)) zadajemy wzorem V (x(t)) := d n dt V (x(t)) = V (x(t)) x x i(t). i 7 i=1

8 Zatem V = V f, jeśli x(t) jest rozwiązaniem równania (2.1). Definicja 2.4. Niech Q R n i 0 Q. Funkcję V : Q R spełniającą warunki: (i) V jest klasy C ( Q); (ii) V jest dodatnio określona w Q; (iii) V = V f jest ujemnie półokreślona w Q, nazywamy słabą funkcją Lapunowa dla układu (2.1). Definicja 2.5. Niech Q R n i 0 Q. Funkcję V : Q R spełniającą warunki: (i) V jest klasy C ( Q); (ii) V jest dodatnio określona w Q; (iii) V = V f jest ujemnie określona w Q, nazywamy silną funkcją Lapunowa dla układu (2.1). Uwaga 2.6. Warunek (iii) definicji 2.4 oznacza, że jeśli x(t) jest rozwiązaniem układu (2.1), to funkcja złożona V (x(t)) jest nierosnącą funkcją zmiennej t. Podobnie warunek (iii) definicji 2.5 będzie oznaczać, że jeśli x(t) jest rozwiązaniem układu (2.1), to funkcja złożona V (x(t)) jest malejącą funkcją zmiennej t. Twierdzenie 2.7. Załóżmy, że funkcja f : Q R n jest klasy C 1 na otwartym podzbiorze Q R n zawierającym początek układu współrzędnych oraz f(0) = 0. Wówczas jeśli dla układu (2.1) istnieje słaba (silna) funkcja Lapunowa, to rozwiązanie stałe x(t) 0, czyli punkt krytyczny x = 0, jest stabilne (odpowiednio asymptotycznie stabilne). 8

9 Uwaga 2.8. Zauważmy, że w przypadku, gdy punkt osobliwy x układu x = f(x) jest punktem różnym od zera, to wprowadzenie, tzw. lokalnych współrzędnych wokół tego punktu pozwala sprowadzić rozważany układ do układu, którego punkt krytyczny zostaje umiejscowiony w początku układu współrzędnych. Definicja 2.9. Lokalnymi współrzędnymi wokół punktu ξ = (ξ 1,..., ξ n ) dla współrzędnych x 1,..., x n nazywamy współrzędne y 1,..., y n określone wzorami y i = x i ξ i, i = 1,..., n. Wykażemy, że funkcja V (y 1, y 2 ) = y1 2 + y1 2 y2 2 + y2, 4 funkcją Lapunowa dla układu (y 1, y 2 ) R 2 jest silną (b) { x 1 = 1 3 x x x 2 2 x x 1 x 2 2 x 2 = x 2 2 x 1 x 2 + x 2 1 x 2 x 3 2 i punktu krytycznego (1, 0). Twierdzenie Niech funkcja f : Q R n będzie klasy C 1 na otwartym podzbiorze Q R n zawierającym początek układu współrzędnych oraz f(0) = 0. Załóżmy, że początek układu współrzędnych jest izolowanym punktem osobliwym układu (2.1) i w pewnym otoczeniu tego punktu istnieje słaba funkcja Lapunowa dla tego układu. Wówczas jeśli pochodna V (x) nie jest tożsamościowo równa zeru na żadnej trajektorii układu (2.1) z wyjątkiem trajektorii składającej się z punktu osobliwego, to punkt ten jest asymptotycznie stabilny. 9

10 Wykażemy, że wszystkie trajektorie układu { x (c) 1 = x 2 x 2 = x 1 (1 x 2 1) x 2, przechodzące przez punkty (x 1, x 2 ) spełniające warunek x x 2 2 < 1, dążą do punktu (0, 0) przy t +. Twierdzenie Niech funkcja f : Q R n będzie klasy C 1 na otwartym podzbiorze Q R n zawierającym początek układu współrzędnych oraz f(0) = 0. Jeżeli istnieje ciągła funkcja rzeczywista W spełniająca warunki: (i) obszar określoności funkcji W zawiera pewne otoczenie N = {x : x r} punktu x = 0; (ii) dowolnie blisko punktu x = 0 istnieją punkty, w których W > 0; (iii) pochodna (iv) W (0) = 0, Ẇ jest dodatnio określona; to punkt krytyczny x = 0 układu (2.1) jest niestabilny. Wykorzystując funkcję W (x 1, x 2 ) = α x β x 2 1 x 2 + γ x 1 x δ x 3 2 z odpowiednio dobranymi współczynnikami α, β, γ, δ wykażemy, że punkt x = (0, 0) jest niestabilnym punktem osobliwym układu (d) { x 1 = x 2 1 x 2 = 2 x 2 2 x 1 x 2. Wykażemy, że punkt x = (0, 0) jest niestabilnym punktem osobliwym układów x 1 = x 2 { (e) x x 2 = x 2 x 3 1, (f) 1 = x 2 2 x 2 1 x 2 = 2 x 1 x 2. 10

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Stabilność rozwiązań równań różniczkowych w ujęciu lokalnych układów dynamicznych. Adam Kanigowski Toruń 2010 1 Spis treści 1 Wprowadzenie

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja

Bardziej szczegółowo

Reakcja Bielousowa-Żabotyńskiego

Reakcja Bielousowa-Żabotyńskiego Reakcja Bielousowa-Żabotyńskiego 1 Kryteria pomocne przy badaniu stabilności punktów stacjonarnych Często badamy układy dynamiczne w pobliżu punktów stacjonarnych. Rozważamy wtedy ich postać zlinearyzowaną:

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Model pajęczyny: Równania modelu: Q d (t)=α-βp(t) Q s (t)=-γ+δp(t-1) Q d (t)= Q s (t) t=0,1,2. α,β,γ,δ>0

Model pajęczyny: Równania modelu: Q d (t)=α-βp(t) Q s (t)=-γ+δp(t-1) Q d (t)= Q s (t) t=0,1,2. α,β,γ,δ>0 Model pajęczyny: Dorota Pawlicka Model jest modelem dynamicznym z czasem dyskretnym t=0,1,2 Rozważmy rynek pewnego pojedynczego dobra. Celem modelu jest ustalenie takiej ścieżki cenowej {} na dobro aby

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp. Definicja 1. Operatorem

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Układy autonomiczne. Rozdział Stabilność w sensie Lapunowa. Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych

Układy autonomiczne. Rozdział Stabilność w sensie Lapunowa. Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych Rozdział 5 Układy autonomiczne 5.1 Stabilność w sensie Lapunowa Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych ẋ = f(x), (5.1) z funkcją f : Q R m, gdzie Q jest otwartym zbiorem

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo