Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe
|
|
- Jolanta Kołodziej
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
2 Plan prezentacji Plan prezentacji 1 Rozkład wielki kanoniczny 2 Własności wielkiego rozkładu kanonicznego 3 Przykład: Klasyczny gaz doskonały 4 Statystyki kwantowe Rozkład Fermiego-Diraca Rozkład Bosego-Einsteina 5 Pytania kontrolne dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
3 Rozkład wielki kanoniczny Zespół wielki kanoniczny i rozkład wielki kanoniczny Zespół wielki kanoniczny to zespół statystyczny stosowany do opisu termodynamicznych własności układów, które mogą wymieniać z otoczeniem energię i cząstki. Badając takie układy zakłada się, że ich otoczenie ma ustaloną temperaturę i potencjał chemiczny: T, µ = const. Natomiast rozkład kanoniczny P (Ω) opisuje częstość, z jaką konkretne mikrostany Ω badanego układu pojawiają się w tym zespole. Rozkład wielki kanoniczny ma postać: P (Ω) = e βe(ω)+βµn(ω), (1) Ξ(β, µ) gdzie Ξ(β, µ) = e βe(ω)+βµn(ω) (2) Ω jest tzw. wielką sumą statystyczną, która pełni bardzo ważną rolę w opisie termodynamicznych własności układów otwartych. dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
4 Własności wielkiego rozkładu kanonicznego Własności wielkiego rozkładu kanonicznego: średnie po rozkładzie Średnia liczba cząstek: N = Ω N(Ω)P (Ω) = 1 β ln Ξ µ, (3) Średnia energia: E = Ω E(Ω)P (Ω) = ln Ξ β + µ N. (4) dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
5 Własności wielkiego rozkładu kanonicznego Logarytm wielkiej sumy statystycznej Wielki potencjał termodynamiczny Można pokazać, że logarytm wielkiej sumy statystycznej w wielkim zespole kanonicznym, definiuje wielki potencjał termodynamiczny: Φ = pv = k B T ln Ξ. (5) W wielu wypadkach powyższe równanie można traktować jak równanie stanu. dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
6 Własności wielkiego rozkładu kanonicznego Multiplikatywność wielkiej sumy statystycznej Wielka suma Ξ(β, µ) występująca w rozkładzie wielkim kanonicznym, ma cechę multiplikatywności, tak samo, jak zwykła suma statystyczna Z(β) występująca w rozkładzie kanonicznym. Korzystając z tej cechy można na przykład pokazać, że wielka suma statystyczna, Ξ, układu otwartego składającego się z nieoddziałujących i nierozróżnialnych cząsteczek oraz będącego w kontakcie z otoczeniem o stałej temperaturze i stałym potencjale chemicznym, T, µ = const, może być zapisana w postaci: Ξ(β, µ) = e eβµ Z 1 (β), (6) gdzie Z 1 (β) oznacza zwykłą (tj. kanoniczną) sumę statystyczną pojedynczej cząsteczki w tym układzie. Ξ(β, µ) = = Ω e β(e(ω) µn(ω)) (7) e βµn e βe(ω N ) (8) = N=0 Ω N ( ) e βµn 1 N! Z(β, N) (9) N=0 1 ( = e βµ N βµ Z 1 (β)) = exp[e Z1 (β)]. (10) N! N=0 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
7 Przykład: Klasyczny gaz doskonały Przykład: Klastyczny gaz doskonały Oblicz wielką sumę statystyczną klasycznego gazu doskonałego o temperaturze T i potencjale chemicznym µ. Wyznacz średnią liczbę cząsteczek gazu w objętości V oraz znajdź ich średnią energię. Załóż, że cząsteczki gazu są nierozróżnialne. Wielką sumę statystyczną klasycznego gazu doskonałego wyznaczamy z wyprowadzonego przed chwilą wzoru: gdzie Ξ(β, µ) = exp[e βµ Z 1 (β, V )], (11) Z 1 (β, V ) = V λ 3, (12) jest zwykłą sumą statystyczną pojedynczej cząsteczki gazu, zaś λ = λ(β) = h 2 β reprezentuje długość fali de Broglie a, która zależy od temperatury gazu. 2πm, (13) Średnią liczbę cząsteczek gazu w objętości V wyznaczamy ze wzoru (3): zaś średnią energię gazu ze wzoru (4): N = 1 β ln Ξ ( ) ( E = ln Ξ β + µ N = Z eβµ 1 β = e βµ 1 Z 1 Z 1 Z 1 β gdzie ε = 3 2 k BT jest średnią energią pojedynczej cząsteczki. µ = eβµ Z 1 (β, V ) = e βµ V λ 3, (14) ) = N ln Z 1 β = N ε, (15) dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
8 Statystyki kwantowe Statystyki kwantowe W wielu zastosowaniach niezbędna jest znajomość średniej liczby określonych cząstek kwantowych (np. elektronów, fotonów, fononów...) w poszczególnych stanach kwantowych. Informacji takiej dostarczają statystyki kwantowe, które można wyprowadzić z wielkiego rozkładu kanonicznego. Statystyki kwantowe opisują średnie liczby cząstek w stanach kwantowych o zadanej energii. Statystyki te wyprowadza się traktując pojedyncze stany kwantowe jak układy otwarte (tj. takie, które mogą wymieniać cząstki z innymi stanami kwantowymi). Można pokazać, że średnia liczba cząstek w stanie o energii ε zależy od tego, czy rozważane cząstki są fermionami, czy bozonami (tzn. czy spełniają zakaz Pauliego, czy nie), i jest równa: gdzie górny znak, +, odnosi się do fermionów ( f ), a dolny,, do bozonów ( b ). 1 N f,b = e β(ε µ) ± 1, (16) Rysunek: a) Rozkład Fermiego-Diraca i b) rozkład Bosego-Einsteina dla kilku wartości temperatury. dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
9 Statystyki kwantowe Rozkład Fermiego-Diraca Rozkład Fermiego-Diraca Zakaz Pauliego: W dowolnym stanie kwantowym może przebywać co najwyżej jeden fermion, n = 0, 1. Wielka suma statystyczna stanu kwantowego: Ξ f = 1 e β(ε µ)n = 1 + e β(ε µ). (17) n=0 Średnia liczba fermionów w stanie kwantowym o energii ε: N f = 1 β ln Ξ f µ 1 = e β(ε µ) + 1. (18) Własności rozkładu Fermiego-Diraca... zostały omówione w skrypcie, str dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
10 Statystyki kwantowe Rozkład Bosego-Einsteina Rozkład Bosego-Einsteina Zakaz Pauliego... nie dotyczy bozonów. W dowolnym stanie kwantowym może przebywać ich dowolna liczba, n = 0, 1, 2,... Wielka suma statystyczna stanu kwantowego: Ξ b = n=0 β(ε µ)n µ 0 e = 1. (19) 1 e β(ε µ) Średnia liczba bozonów w stanie kwantowym o energii ε: N b = 1 ln Ξ b 1 = β µ e β(ε µ) 1. (20) Własności rozkładu Bosego-Einsteina... zostały omówione w skrypcie, str dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
11 Pytania kontrolne Pytania kontrolne 1 Podaj wzór na rozkład prawdopodobieństwa mikrostanów w zespole wielkim kanonicznym. Do opisu jakich układów stosuje się ten rozkład. 2 Pokaż, że wzór opisujący średnią liczbę cząstek w wielkim rozkładzie kanonicznym ma postać: N = Ω N(Ω)P (Ω) = 1 β ln Ξ µ. 3 Co to jest rozkład Fermiego-Diraca. Podaj wzór i omów własności tego rozkładu. 4 Co to jest rozkład Bosego-Einsteina. Podaj wzór i omów własności tego rozkładu. dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej 1 stycznia / 11
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Wielki rozkład kanoniczny
, granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany
Statystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie
Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra
Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0
Wykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących
Wielki rozkład kanoniczny
Ćwiczenia nr 0 Wielki rozkład kanoniczny Jest to rozkład prawdopodobieństwa dla układu o zmiennej liczbie cząstek N. Liczbę cząstek możemy potraktować jako dodatkową liczbą kwantową układu. ψ jest to stan
1 Rachunek prawdopodobieństwa
1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra
Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Zespół kanoniczny Zespół mikrokanoniczny jest (przynajmniej w warstwie
Zadania z Fizyki Statystycznej
Zadania z Fizyki Statystycznej 1. Wyznaczyć skok wartości pochodnej ciepła właściwego w temperaturze krytycznej dla gazu bozonów, w temperaturze w której pojawia się konensacja [1].. Wyznaczyć równanie
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
Termodynamiczny opis układu
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny
Elementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym. P. F. Góra
Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Operator gęstości W przypadku klasycznym chcieliśmy znać gęstość stanów układu. W przypadku
Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
ELEMENTY FIZYKI STATYSTYCZNEJ
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis
Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }
Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[
Komputerowe modelowanie zjawisk fizycznych
Komputerowe modelowanie zjawisk fizycznych Ryszard Kutner Zakład Dydaktyki Fizyki Instytut Fizyki Doświadczalnej, Wydział Fizyki Uniwersytet Warszawski IX FESTIWAL NAUKI WARSZAWA 2005 BRAK INWESTYCJI W
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
TERMODYNAMIKA. Zajęcia 1 ( )
TERMODYNAMIKA Zajęcia 1 (018.10.03) 1.1 Wiadomo że dla gazu doskonałego, molowa energia wewnętrzna u jest jedynie funkcją temperatury u=u(t), oraz że molowe ciepło właściwe c v jest stałe (niezależne od
Agata Fronczak Elementy fizyki statystycznej
Agata Fronczak Elementy fizyki statystycznej Skrypt do wykładu i ćwiczeń rachunkowych dla kierunku Fotonika (rok III, semestr 5) na Wydziale Fizyki PW Warszawa 2016 Spis treści 1. Termodynamika klasyczna,
Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29
Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...
Cząstki Maxwella-Boltzmanna (maxwellony)
TiFS, Ćwiczenia nr 4 Cząstki Maxwella-Boltzmanna (maxwellony) Jeśli do wielkiej sumy statystycznej zastosuje się klasyczną poprawkę na niezrozróżnialność cząstek to w wyniku otrzymuje się własności cząstek,
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Cele Cele Wyznaczenie średniego obsadzenia średniej energii równania stanu dla nieodziałujących gazów kwantowych fermionowego (gaz elektronowy w ciele stałym) bozonowego (kondensaty)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych
Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w
Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny
Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny 1 Rozkład Mikrokanoniczny (przypomnienie) S= k B ln( (E,V,{x i },{N j }) ) Z fenomenologii: Niestety, rachunki przy użyciu rozkładu mikrokanonicznego
Wykłady z Fizyki. Kwanty
Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Fizyka statystyczna doskona ego gazu bozonów
Fizyka statystyczna doskonaego gazu bozonów Kazimierz Rzewski Centrum Fizyki Teoretycznej PAN oraz Uniwersytet Kardynaa Stefana Wyszyskiego w Warszawie Fizyka statystyczna doskonaego gazu bozonów Kazimierz
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
TERMODYNAMIKA. Zajęcia 1 ( )
TERMODYNAMIKA Zajęcia 1 (2018.10.03) 1.1 Wiadomo że dla gazu doskonałego, molowa energia wewnętrzna u jest jedynie funkcją temperatury u=u(t), oraz że molowe ciepło właściwe c v jest stałe (niezależne
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej
Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC
VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
Zadania kwalifikacyjne na warsztaty "Zjawiska krytyczne"
Zadania kwalifikacyjne na warsztaty "Zjawiska krytyczne" Maciej Kolanowski 1 maja 018 Lista zadań już jest zamknięta. Rozwiązania proszę wysyłać na maila (do znalezienia na moim WWW profilu) lub telepatycznie.
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
Klasyczna mechanika statystyczna Gibbsa I
Wykład III Mechanika statystyczna Klasyczna mechanika statystyczna Gibbsa I Wstępne uwagi Materia nas otaczająca, w szczególności gazy będące centralnym obiektem naszego zainteresowania, zbudowane są z
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.
1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań
n p 2 i = R 2 (8.1) i=1
8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem
Warunki równowagi i rozkład kanoniczny. H0 E 1 EL 8E 1 < W i HE i L ~ E i W 2 E - E 1 W 1 E 1. iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = E
Warunki równowagi i rozkład kanoniczny. W HEL = W 1 HE 1 L W 2 HE - E 1 L 8E 1 < H0 E 1 EL W i HE i L ~ E i N W 2 E - E 1 W 1 E 1 iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = 0 E 1 = E W 2 HE - E 1 L W 1 HE
FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych
FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Bozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika 1. Informacje
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
WYKŁAD 2. Problem regresji - modele liniowe
Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Fizyka Statystyczna 1
Uniwersytet Wrocławski Instytut Fizyki Teoretycznej Katarzyna Weron Fizyka Statystyczna 1 Skrypt dla studentów Wrocław, maj 2010 2 Spis treści 1 Elementy termodynamiki 1 1.1 Wielkości termodynamiczne..........................
Od termodynamiki klasycznej do nieekstensywnej
Od termodynamiki klasycznej do nieekstensywnej Rafał Topolnicki rtopolnicki@o2.pl KNF Migacz Uniwersytet Wrocławski Wrocław, 27 maja 2010 Od termodynamiki klasycznej do nieekstensywnej Wrocław, 27 maja
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
Układy wieloelektronowe
Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Wykład 13 Mechanika Kwantowa
Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne
W5. Rozkład Boltzmanna
W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
w rozrzedzonych gazach atomowych
w rozrzedzonych gazach atomowych Anna Okopińska Instytut Fizyki S P IS T RE Ś C I I WSTĘP II. TEORIA ZDEGENEROWANYCH GAZÓW DOSKONAŁYCH III. WŁASNOŚCI MATERII W NISKICH TEMPERATURACH IV. METODY CHŁODZENIA
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
4 Przekształcenia pochodnych termodynamicznych
4 Przekształcenia pochodnych termodynamicznych 4.1 Relacje Maxwella Pierwsza zasada termodynamiki może być zapisana w postaci niezależnej od reprezentacji jako warunek znikania formy Pfaffa: Stąd musi
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Przejścia kwantowe w półprzewodnikach (kryształach)
Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki