LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 2
|
|
- Mikołaj Sikorski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Laboratorium Modelowaia i symulacji 008 r. Wydział Elektryczy Zesół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie Rozwiązywaie rówań róŝiczkowych zwyczajych metodą klasyczą. Metoda Eulera.. Cel ćwiczeia Celem ćwiczeia jest zaozaie się z metodami rozwiązywaia liiowych rówań róŝiczkowych zwyczajych (w tym metodami umeryczymi) w języku Matlab.. Wrowadzeie. Rówaiem róŝiczkowym liiowym azywamy rówaie ostaci: && & ( ) ( ) ( m ) a y + a y a y + a y + a0 y = b0 + b + b + bm + & & b m ( m) () w rówaiu tym: wymuszeie y odowiedź Rozwiązaiem rówaia () jest całka będąca sumą całki staowiącej rozwiązaie rówaia róŝiczkowego jedorodego oraz jedej z całek szczególych będącej rozwiązaiem rówaia róŝiczkowego iejedorodego.: y = y + yu () y(t) składowa rzejściowa (swoboda) jest rozwiązaiem rówaia (3): ( ) ( ) a y + a y a && y + a y& + a0 y = 0 (3) yu(t) składowa wymuszoa Rozwiązaie rówaia jedorodego (II rzędu): Będziemy rozatrywać rówaie ostaci: odstawiamy: d y dy a + b + cy = 0 (4) r r r y = e y' = re, y'' = r e (5) mamy: r r r ar e + bre + ce = 0 (6) i dalej: ar + br + c = 0 (7) Rówaie (7) zwae jest rówaiem charakterystyczym. Istieją astęujące wariaty rozwiązaia:. Dwa róŝe ierwiastki (rzeczywiste) r i r Ćwiczeie Rozwiązywaie rówań róŝiczkowych --
2 Laboratorium Modelowaia i symulacji 008 r.. Jede ierwiastek odwójy r, y = C e r + C e r r, y = ( C + C ) e 3. Dwa ierwiastki zesoloe, srzęŝoe r = α+iβ, r = α-iβ α y = e C cos β + C si β ) ( Stałe C, C wyzacza się dla zadaych waruków oczątkowych. (8) (9) (0) Rozwiązaie rówaia iejedorodego (I rzędu) metoda uzmieiaia stałej. Sosób rozwiązaia rówaia iejedorodego ierwszego rzędu zostaie rzedstawioy a rzykładzie. Rozatrzmy rówaie: dy 3 y = () Krok ierwszy: Rozwiązaie rówaia jedorodego (metoda rozdzieleia zmieych). dy y = 0 () y dy = dy = y l( y ) = l( ) + C (3) Podstawieie: C = l( C ); C 0, daje astęującą całkę ogólą rówaia (): y = C (4) Krok drugi: Uzmieieie stałej C : C = u( y = u( dy du( dy du( (5) = + u( = u( + Krok trzeci: Podstawieie (5) do () du( 3 du( 3 u( + u( = = du( = u ( = + C (6) Krok czwarty: Podstawieie (6) do (5): dy dy = ( + C) + = 3 + C (7) Krok Piąty: Rozwiązaie rówaia () 3 y = 3 + C = 3 + C = + C (8) ( ) Ćwiczeie Rozwiązywaie rówań róŝiczkowych --
3 Laboratorium Modelowaia i symulacji 008 r. 5 0 C = 3 C = C = -3 5 Y X Wykres. Ilustracja rozwiązaia rówaia () dla trzech róŝych wartości wsółczyika C 3. Metoda Eulera Rozatrywać będziemy zagadieia oczątkowe, tz. będziemy chcieli zaleźć rozwiązaie rówaia róŝiczkowego dla zadaej wartości u 0 (t 0 ) w ukcie oczątkowym t 0 : du( t) = f ( u( t), t) dt u ( t = u 0 ) Wrowadźmy ozaczeia: t i = t 0 +i t, u i =u(t i ), f i =f(u i,t i ). Ogólą metodą a rozwiązaie rówaia róŝiczkowego, jest zaisaie go w ostaci całkowej a astęie odcałkowaie i zastosowaie rzybliŝeia a całkę wystęującą o lewej stroie. W metodzie Eulera ochodą zastęuje się ilorazem róŝicowym w rzód oartym a węzłach t i t +. Całka o lewej stroie rzybliŝaa jest w związku z tym iloczyem wartości fukcji w oczątku rzedziału i jego długości. Dla metody Eulera mamy: u + u = f ( u, t ) u+ = u 0 + tf ( u t Wzór rzedstawia zaleŝość omiędzy wartością astęą a orzedią wyzaczaego rozwiązaia. t ozacza krok całkowaia (dyskretyzacji). Uleszoa metoda Eulera (MIDPOINT) Z uwagi a wolą zbieŝość metody Eulera, aby zachować duŝą dokładość obliczeń tą metodą trzeba stosować bardzo mały krok całkowaia. Zwiększa to ilość wykoywaych oeracji a w astęstwie wydłuŝa czas otrzeby a uzyskaie rozwiązaia. Zwiększeiu ulega teŝ wymagaa ilość amięci oeracyjej iezbęda do wykoaia całkowaia. PowyŜsze iedogodości owodują, Ŝe częściej stosuje się uleszoą metodę Eulera (MIDPOINT). Polega oa a wrowadzeiu dodatkowego uktu (środek rzedziału). Odowiedie wzory rzedstawioo oiŝej: t u = u + f ( u, t ) + (0) u = u + t f ( u, t ) + W metodzie tej wartość fukcji dla t +/ oblicza się z dwa razy miejszym krokiem. Są rówieŝ moŝliwe ie modyfikacje metody Eulera. + +, t ) (9) Ćwiczeie Rozwiązywaie rówań róŝiczkowych -3-
4 Laboratorium Modelowaia i symulacji 008 r. 4. Program ćwiczeia: W ćwiczeiu rozwiązywae będą dwa rówaia róŝiczkowe: a) y& + y = 0 + 0cos t rzy waruku ocz. = () b) & y + y& + 5y = t rzy waruku ocz. = 0, y& (0) = () Zostaą zarezetowae trzy sosoby rozwiązaia tych rówań: - metodą aalityczą - metodą Eulera - rzy wykorzystaiu istiejących w systemie Matlab fukcji wsierających rozwiązywaie rówań róŝiczkowych (ODE Ordiary Differetial Equatios) I. Rozwiązywaie rówaia róŝiczkowego ():. Rozwiązaie rówaia o wsółczyikach stałych met. klasyczą: y& + y = 0 + 0cos t, = a) Rozwiązaie: rozwiązaie ogóle (rówaie jedorode): rówaie charakterystycze: r + = 0 r = całka ogóla (rozwiązaie rówaia jedorodego): y = C e y - składowa swoboda. rzewidujemy całkę szczególą ostaci: A + B cos( t) + C si(t) Po odstawieiu całki szczególej do ostaci ogólej rozwiązywaego rówaia otrzymao: A = 5, B = 5/, C = 5/ Z waruku oczątkowego:, C = -/, więc: t 5 y( t) = e (cos t + si t) b) W okie oleceń Matlaba wrowadzić astęujące oleceia: >> t = 0:0.:0 ; % wektor wartości zmieej iezaleŝej >> y = (-/)*e(-.*t)+5+(5/)*(cos(.*t)+... si(.*t)); % wektor rozwiązań >> lot(t, y); % wykres Oisać i skoiować wykres.. Rozwiązaie rówaia róŝiczkowego metodą Eulera: a) W systemie Matlab utworzyć owy m-lik (File New M-file). Wrowadzić astęujący skryt: deltat = 0.; t_euler = 0:deltat:0; y_euler = zeros(size(t_euler)); y_euler(,) = ; for i = :legth(t_euler)- y_euler(,i+) = y_euler(,i) + deltat.*(0+0.*... cos(.*t_euler(,i)) -.*y_euler(,i)); ed t Ćwiczeie Rozwiązywaie rówań róŝiczkowych -4-
5 Laboratorium Modelowaia i symulacji 008 r. Zaisać skryt w liku euler_y.m, w katalogu odaym rzez rowadzącego. Z liii oleceń Matlaba wisać: >> euler_y ; >> lot(t_euler, y_euler); Oisać i skoiować wykres. Dokoać zmia w skrycie zgodie ze wskazówkami rowadzącego (zmiaa kroku całkowaia, ew. zmiaa całkowaej fukcji, waruku oczątkowego, zmiaa metody ( midoit )) Korzystając ze zaych oleceń umieścić a jedym rysuku i odowiedio oisać wykresy będące rozwiązaiami rówaia () metodą klasyczą i metodą Eulera. 3. Rozwiązaie rówaia róŝiczkowego metodą ODE: Zadaie Dla rówaia () aisać rogram rozwiązujący je metodą ODE II. Rozwiązywaie rówaia róŝiczkowego ():. Rozwiązaie rówaia o wsółczyikach stałych met. klasyczą: & y + y& + 5y = t, = 0, y& (0) = c) Rozwiązaie: Rozwiązaie ogóle (rówaie jedorode): Rówaie charakterystycze: r + r + 5 = 0 WyróŜik rówaia charakterystyczego jest miejszy od zera, a więc rówaie osiada dwa ierwiastki zesoloe, srzęŝoe: r = + j, r = j całka ogóla (rozwiązaie rówaia jedorodego): t y t) = e C cos( t) + C ( si( )) ( t Z uwagi a to, Ŝe o rawej stroie rozwiązywaego rówaia wystęuje liiowa fukcja t rzewidujemy całkę szczególą ostaci: A t + B Podstawiając całkę szczególą do ostaci ogólej, otrzymao astęujące stałe: A =, B =. 5 5 Z waruków oczątkowych: C =/5, C =47/50, więc: y u = t, 5 5 i ostateczie: t 47 y = y + yu = t + e cos( t) + si( t) d) W okie oleceń Matlaba wrowadzić astęujące oleceia: >> t = 0:0.:0; >> y = (/5).*t-(/5)+e(-t).*((/5).*cos(.*t)+... (47/50).*si(.*t)); >> lot(t,y);. Rozwiązaie rówaia róŝiczkowego metodą Eulera: Ćwiczeie Rozwiązywaie rówań róŝiczkowych -5-
6 Laboratorium Modelowaia i symulacji 008 r. Zadaie Naisać algorytm rozwiązaia rówaia róŝiczkowego () metodą Eulera. Wskazówka Drugą ochodą, rzedstawić w ostaci ilorazu róŝicowego II rzędu. Korzystając ze zaych oleceń umieścić a jedym rysuku i odowiedio oisać wykresy będące rozwiązaiami rówaia () metodą klasyczą i metodą Eulera. 3. Rozwiązaie rówaia róŝiczkowego metodą ODE: Aby wykorzystać ODE aleŝy rówaie -tego rzędu zamieić a układ rówań I rzędu. Dla rówaia II rzędu: & y + y& + 5y = t, = 0, y& (0) = dokouje się zamiay a układ rówań I rzędu wykorzystując astęujące odstawieia y = y, oraz y = y&. Wtedy owyŝsze rówaie moŝa zaisać jako: y& = y y& = 5y y + t Wykorzystując edytor systemu Matlab (File New M-file) zaisać owyŝszy układ rówań w liku rowaie.m w astęujący sosób: fuctio dy = rowaie(t,y) dy=[y();(-5)*y()-*y()+t]; y() ozacza tu ochodą zmieej y rzędu (-), y() ozacza szukaą fukcję y(t). W celu rozwiązaia układu rówań róŝiczkowych -go rzędu aleŝy wisać z liii oleceń Matlaba: >> [t_ode,y_ode]=ode45('rowaie',[0 0],[0;]); >> lot(t_ode, y_ode(:,), t, y) >> leged('ode', 'Rozwiązaie aalitycze'); Pierwszy arametr wywołaia fukcji ode45 azwa fukcji oisującej rozwiązyway układ rówań róŝiczkowych, drugi arametr zakres zmia zmieej iezaleŝej (t), trzeci arametr kolumowy wektor waruków oczątkowych. W wyiku obliczeń zwrócoy zostaie: t wektor wartości zmieej iezaleŝej, dla których wyzaczoo rozwiązaie, y macierz wartości fukcji y(t) oraz y (t). Korzystając z fukcji omocy zaozaj się z iymi metodami rozwiązywaia rówań róŝiczkowych zaimlemetowaymi w Matlabie w ostaci fukcji. Oracowaie srawozdaia W srawozdaiu aleŝy umieścić wykresy rozwiązań omawiaych rówań. Porówać rozwiązaia aalitycze z umeryczymi dla róŝych arametrów (krok całkowaia, metoda Eulera, ODE). Omówić jak zmiaa arametrów rozwiązań umeryczych wływa a dokładość rozwiązaia. Zadaie 3 Naisać skryt w języku Matlab rozwiązujący rówaie róŝiczkowe () wstę teoretyczy (dowola omawiaa metoda). Literatura. B. Mrozek, Z. Mrozek: MATLAB i Simulik: oradik uŝytkowika. Helio, Gliwice, A. Zalewski, R. Cegieła: Matlab - obliczeia umerycze i ich zastosowaia.wydawictwo Nakom, Pozań, J. Brzózka, L. Dorobczyński: Programowaie w Matlab. Wydawictwo Mikom,Warszawa, 998. Ćwiczeie Rozwiązywaie rówań róŝiczkowych -6-
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie
DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION
JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch
Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Równania różniczkowe
Rówaia różiczkowe Niech F: +, y: Def. Rówaiem różiczkowym zwyczajym rzędu azywamy rówaie postaci F(,y,y,y,, y () ) = (*) Rozwiązaiem rówaia (*) azywamy każdą fukcję y=y() taką, że po wstawieiu do rówaia
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Rozdział 5: Drgania liniowych układów ciągłych. , częstości własnych
WYKŁAD Rozdział 5: Drgaia iiowych układów ciągłych Część : Drgaia wymuszoe eek 5.8. Drgaia eki wymuszoe rozłożoą siłą harmoiczą Rozatrzmy teraz ekę dowoie odartą a ou swych końcach, ez dołączoych uktów
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
CAŁKA NIEOZNACZONA. F (x) = f(x) dx.
CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Rozdział 4 Model teoretyczny 40
4. Model teoretyczy ozdział 4 Model teoretyczy 4 4. ówaia fizycze. Klasycze odele teoretycze oisujące zachowaie się betou zwye ostulują istieie lastyczości tego ateriału [7, 5]. W ostatich latach coraz
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Równania liniowe rzędu drugiego stałych współczynnikach
Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty
MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Badanie efektu Halla w półprzewodniku typu n
Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
Laboratorium Techniki Obliczeniowej i Symulacyjnej
Laboratorium Techniki Obliczeniowej i Symulacyjnej Ćwiczenie 6. Rozwiązywanie równań różniczkowych w środowisku MATLAB. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac
Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi
Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E
Metody numeryczne Laboratorium 5 Info
Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych
MATEMATYKA cz. 4 Szeregi funkcyjne i równania róŝniczkowe zwyczajne
Ja Nawrocki MATEMATYKA cz. 4 Szeregi fukcyje i rówaia róŝiczkowe zwyczaje Politechika Warszawska 010 Politechika Warszawska Wydział Samochodów i Maszy Roboczych Kieruek "Edukacja techiczo iformatycza"
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 4 PODSTAWOWE UKŁADY DYNAMICZNE
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczenie 4 PODSTAWOWE UKŁADY DYNAMICZNE Program ćwiczenia: 1. Podstawowe wymuszenia w dziedzinie czasu Utworzyć
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Laboratorium Metrologii I Nr ćwicz. Opracowanie serii wyników pomiaru 4
Laboratorium Metrologii I olitechika Rzeszowska Zakład Metrologii i Systemów omiarowych Laboratorium Metrologii I Grua Nr ćwicz. Oracowaie serii wyików omiaru 4... kierowik...... 4... Data Ocea I. Cel
Rozwiązanie równania oscylatora harmonicznego
3 FOTON 1, Wiosa 13 Rozwiązaie rówaia oscylatora harmoiczego Adrzej Odrzywołek Istytut Fizyki UJ 1 Wstęp Motywacją do zebraia różych sposobów rozwiązaia rówaia oscylatora harmoiczego: d x() t m k x() t
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
Analiza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI
Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
( t) ( )( ) ( )( ) ( )
. Aaliza liiowa.. Obiekty LTI.. Defiiowaie modelu SISO Najrostsze modele dyamiki, oisujące liiowe układy z jedym wejściem i jedym wyjściem mają zazwyczaj ostać rówaia różiczkowego lub trasmitacji. Modele
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 1 Pla wykładu Co to są szeregi Fouriera? Sposoby budowaia rozwiązań mającyc postać szeregów Rówaiepłyty Ilustracja metody szeregów Fouriera a przykładzie zgiaej płyty. 1
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
1 Równania różniczkowe drugiego rzędu
Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
CZ.2. SYNTEZA STRUKTURY MECHANIZMU
CZ.. SYNTEZA STRUKTURY MECHANIZMU rzystęując do sytezy struktury mechaizmu łaskiego stawiamy astęujące ytaia: jaki ruch ma wykoywać czło lub człoy robocze: ostęowy (w szczególości ostęowy rostoliiowy),
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Temat lekcji: Utrwalenie wiadomości dotyczących rozwiązywania równań kwadratowych.
-- S C E N A R I U S Z L E K C J I Przedmiot: Matematyka Klasa: (poziom podstawowy Imię i azwisko auzyiela: Aleksadra Trzepaz Temat lekji: Utrwaleie wiadomośi dotyząyh rozwiązywaia rówań kwadratowyh. Cele
Estymacja przedziałowa - przedziały ufności
Estymacja rzedziałowa - rzedziały ufości Próbę -elemetową charakteryzujemy jej arametrami ( x, s, s ). SłuŜą oe do ocey wartości iezaych arametrów oulacji (m, σ, σ). Nazywamy je estymatorami uktowymi iezaych
Wyznaczanie rozwiązań kompromisowych wieloosobowych gier kooperacyjnych w postaci analitycznej
Bi u l e t y WAT Vo l LX, r 4, 20 Wyzaczaie rozwiązań komromisowych wieloosobowych gier kooeracyjych w ostaci aalityczej Adrzej Ameljańczyk Wojskowa Akademia Techicza, Wydział Cyberetyki, 00-908 Warszawa,
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Stochastyczne metody optymalizacji
Stochastycze metody otymalizacji I a b b a b = a d Metoda rostokątów N N i i= 0 i= 0 d = σ = h y Metoda traezów d h y y N 0 + ( ) = + yi i= Metoda Simsoa i ξ [ a, b] b h = 0 3 4 5 4 3 a ( b a) R = ( ξ
Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.
FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x
Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka
Przykładowe pytaia a egzami dyplomowy dla kieruku Automatyka i obotyka Aktualizacja: 13.12.2016 r. Przedmiot: Matematyka 1 (Algebra liiowa) 1. Wiemy że struktura (Gh) jest grupą z elemetem eutralym e.
( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( )
Wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A Celem ćwiczeia jest wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A. Zając wartości teoretycze (omiale) i rzeczywiste
Funkcje tworzące - przypomnienie
Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI
Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej
POLITECHNIKA WARSZAWSKA Istytut Elektroeergetyki, Zakład Elektrowi i Gosodarki Elektroeergetyczej Ekoomika wytwarzaia, rzetwarzaia i uŝytkowaia eergii elektryczej - laboratorium Istrukcja do ćwiczeia t.:
, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski
METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI LABORATORIUM r 01 Temat: PERCEPTRON dr iż. Robert Tomkowski pok. 118 bud. C robert.tomkowski@tu.koszali.pl tel. 94 3178 251 Metody i zastosowaia sztuczej iteligecji
P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Przejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
2. Schemat ideowy układu pomiarowego
1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)
D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B