Drgania, dynamika nieliniowa i chaos deterministyczny. Katarzyna Weron

Wielkość: px
Rozpocząć pokaz od strony:

Download "Drgania, dynamika nieliniowa i chaos deterministyczny. Katarzyna Weron"

Transkrypt

1 Drgania, dynamika nieliniowa i chaos deterministyczny Katarzyna Weron

2 Polecana literatura Polecam też skrypt: David Morin, Waves

3 Liniowość: Oscylator harmoniczny Prawo Hooke a: F x (x) = kk F = F x, F y, F z = ( kk, 0,0) x = 0: położenie równowagi 0 x x < 0 F x = kk > 0 0 F x = kk < 0 x 0 x > 0 x x < 0: wychylenie z położenia równowagi x > 0: wychylenie z położenia równowagi

4 Ruch harmoniczny małe wychylenia Z II zasady Newtona: F x = ma x = m dv x dd = m d2 x dt 2 F = F x, F y, F z = ( kk, 0,0) m d2 x dt 2 = kk x + k m x = 0 P 2 W = F dl P 1 Jakie x t spełnia to równanie?

5 Ruch harmoniczny rozwiązanie x + k m x = 0 ( ) Spróbujmy: x t = AAAA ωω + φ x = AA sin ωω + φ, x = Aω 2 ccc ωω + φ Wstawiamy do : Aω 2 ccc ωω + φ + k m ω 2 + k m AAAA ωω + φ = 0 AAAA ωω + φ = 0

6 Ruch harmoniczny rozwiązanie x + k m x = 0 Spróbujmy: x t = AAAA ωω + φ ω 2 + k m AAAA ωω + φ = 0 Spełnione dla każdego t jeśli: ω 2 = k m ω = k m

7 Częstość kątowa x + k m x = 0, x t = AAAA ωω + φ x t + 2π ω = AAAA ω t + 2π ω + φ = AAAA ωω + 2π + φ = AAAA ωω + φ = x(t) T = 2π ω okres

8 Amplituda (A) i faza (φ) x + k m x = x + ω2 x = 0, x t = AAAA ωω + φ x 0 = AAAA 0 + φ = AAAA(φ) φ = 0 x 0 = AAAAA = A David Morin,

9 Inne formy rozwiązań x + k m x = x + ω2 x = 0, x t = AAAA ωω + φ = Asss ωω + φ = B c ccc ωω + B s sss ωω = Ce iii + C e iii B c = AAAAA, B s = AAAAA Wiesz skąd te inne formy?

10 Wzór Eulera i rozwiązanie ogólne e ii = cccc + iiiii wzór Eulera e ii = cccc iiiii Stąd: 2cccc = e ii + e ii, 2iiiiφ = e ii e ii Szukamy zwykle ogólnego rozwiązania w postaci: x t = Ce rr, x = CCe rr, x = Cr 2 e rr x + k m x = 0 Cr 2 e rr + k m Cerr = 0 r 2 + k m = 0 r = ±ii równanie charakterystyczne

11 Rozwiązanie ogólne Szukamy zwykle ogólnego rozwiązania w postaci: x t = Ce rr Otrzymaliśmy: r = ±ii Mamy dwa rozwiązania: x 1 t = C 1 e iit, x 2 t = C 2 e iii Zasada superpozycji w układach liniowych: x t = x 1 t + x 2 t = C 1 e iii + C 2 e iii

12 Rozwiązanie musi być rzeczywiste x t = x 1 t + x 2 t = C 1 e iii + C 2 e iii Żeby x t było rzeczywiste to C 1 = C 2 Czyli: C 1 = C = C 0 e ii, C 2 = C = C 0 e ii x t = C 0 e ii C 0 e iωω + C 0 e ii C 0 e iii = 2C 0 cos (ωω + φ) Czyli faktycznie tożsame formy

13 W równaniach liniowych obowiązuje zasada superpozycji x 1 t i x 2 t - rozwiązania liniowego równania różniczkowego Rozwiązaniem jest też dowolna kombinacja liniowa x t = C 1 x 1 t + C 2 x 2 (t) Liniowe jednorodnego równania różniczkowego rzędu n: n liniowo niezależnych rozwiązań. Każda kombinacja liniowa tych n rozwiązań jest rozwiązaniem. Liniowa niezależność funkcji: żadna z tych funkcji nie jest równa kombinacji liniowej pozostałych.

14 Wahadło matematyczne układ nieliniowy F x = mmmmmm Druga zasada dynamiki: ma x = mmmmmm a x = ggggg = d2 x dt 2 Długość łuku: x = LL Równanie ruchu: nieważki pręt punktowa masa θ + g L ssss = 0 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

15 Jak to rozwiązać? θ + g L ssss = 0 ssss = θ θ3 3! + θ5 5! Jeśli założysz, że θ 0, wtedy ssss = θ θ + g L θ = 0

16 Wahadło matematyczne i oscylator harmoniczny Wahadło matematyczne i oscylator harmoniczny: θ + g L θ = 0 x + k m x = 0 Częstość własna wahadła (kątowa): Okres nie zależy od masy ani wychylenia?! ω 0 2 = g L ω = 2π T = 2ππ T 0 = 2π ω 0 = 2π L g

17 Okres drgań prawdziwego wahadła T 0 = 2π ω 0 = 2π L g Tego się uczymy w szkole By Alessio Damato,

18 Przestrzeń konfiguracyjna dla oscylatora harmonicznego 10 5 θ, dθ/dt t

19 Przestrzeń fazowa dla oscylatora harmonicznego dθ/dt Każdy punkt w tej przestrzeni określa stan układu Przestrzeń położeń i pędów x, y, z, p x, p y, p z Dla układu wielu cząstek x 1, y 1, z 1, x 2, y 2, z 2, p x1, p y1, p z1, p x2, p y2, p z2, θ

20 A jeśli interesują nas duże kąty? θ + g L ssss = 0 Jak to rozwiązać? A co jeśli jakieś dodatkowe siły? Tłumienie Wymuszanie cykliczne Wahadło może zadziwić!

21 Oscylator tłumiony i wymuszany mx + kk = 0 oscylator harmoniczny (liniowe jednorodne) mx + bx + kk = 0 tłumienie (liniowe jednorodne) mx + bx + kk = F(t) wymuszanie (liniowe niejednorodne) x + b m x + k F t x = m m = f t = f 0sin (ωω) Liniowe równania różniczkowe dla położenia klocka x Brak niespodzianek Liniowe jednorodne bardzo łatwe do rozwiązania

22 Inne równanie nieliniowe: Prawo Newtona powszechnej grawitacji Każda masa M przyciąga inną masę m z siłą: GGG r RN mr r 2 = mmm r r 2 Stała grawitacji: G = Nm 2 /kg 2 Przykład: M z m kk r z km r F F z = G M z r z 2 m, G M z r z m s 2 M

23 Czy układ słoneczny jest stabilny? 1887 król Szwecji Oscar II: nagroda H. Poincare ( ), francuski matematyk Za co? (c) Wikipedia

24 Co zrobił Poincare? Problem 3 ciał i równania dynamiki, 1890 (270 stron) Zaskakująco skomplikowane zachowanie Problem stabilności układu słonecznego nie jest rozwiązany do dziś Podwaliny teorii chaosu

25 Równanie logistyczne dynamika populacji ( ) ( ) ( ) n n n n n n n n n n n n n x x r x c r r x c rc c c c r c c c + = + = + = = ) ( a P. F. Verhulst (belgijski matematyk), 1845:

26 Dynamika populacji Populacja Pantofelków w labolatorium Popularny skorupiak ( pchła wodna ) Populacja fok na wyspie Świętego Pawła, Alaska

27 Iteracja równania logistycznego c t+1 = ac t (1 c t ) Przykład: a = 0.5, c 0 = 0.5 c 1 = ac 0 1 c 0 = = = 1 8 = c 2 = ac 1 1 c 1 = = = = 0.05 c 0 > c 1 > c 2 > Przykład: a = 0.5, c 0 = 1 c 1 = ac 0 1 c 0 = a 1 0 = 0 c 2 = ac 1 1 c 1 = a 0 1 = 0

28 Przykłady: c t+1 = ac t (1 c t ) < a < < a < 2 c t 0.4 c t a= t a= t c t a= t c t 2 < a < 3 3 < a < a= t

29 Co możemy otrzymać? Punkty stałe Cykle Chaos c t a= c t a= c t a= c t

30 Punkty stałe c t+1 = f c t = ac t (1 c t ) Punkt stały: c t+1 = f c t = c t = c Czyli: ac 1 c = c ac ac 2 = c c a 1 ac = 0 c = 0, c = a 1 a c t a= c t

31 Co to znaczy, że punkt stały jest stabilny? Atraktor Punkt stały niestabilny Punkt stały stabilny Układy dynamiczne Punkt stały Punkt stały stabilny Punkt stały niestabilny Fizyka Równowaga Równowaga trwała Równowaga nietrwała

32 Kryterium stabilności x t = x + ε t, x t+1 = x + ε t+1, f x = x Niech odległość ε t od punktu stałego mała: x t+1 = f x t = f x + ε t f x + f x ε t = x + λε t Czyli: x t+1 = x + ε t+1 x t+1 x + λε t ε t+1 λε t, λ = f x Odległość od punktu stałego rośnie z czasem: λ > 1 Odległość od punktu stałego rośnie z czasem: λ < 1

33 Typy punktów stałych f '( x*) < 1 przyciągający (stabilny) f '( x*) > 1 < f ' 0 < f ' < 1 1 < f ' < f ' < odpychający (niestabilny) odpychający schodkowo przyciągajacy schodkowo przyciągający spiralnie odpychający spiralnie

34 Typy punktów stałych równania logistycznego f = ax ( 1 x), f ( x *) a 1 x* = 0, x* = a a 1 f ' = a(1 2x), f '(0) = a, f ' = 2 a = x * 0 < a < 1 odpychający schodkowo 1 < a < 2 przyciągający schodkowo 2 < a < 3 przyciągający spiralnie 3 < a < 4 odpychający spiralnie a

35 Zachowanie dla a< c t c t c t t 0 < a < 1 odpychający schodkowo 1 < a < 2 przyciągający schodkowo 2 < a < 3 przyciągający spiralnie 3 < a < 4 odpychający spiralnie

36 a= c t c t t 0 < a < 1 odpychający schodkowo c t 1 < a < 2 przyciągający schodkowo 2 < a < 3 przyciągający spiralnie 3 < a < 4 odpychający spiralnie

37 a= c t c t c t 0 < a < 1 odpychający schodkowo 1 < a < 2 przyciągający schodkowo 2 < a < 3 przyciągający spiralnie 3 < a < 4 odpychający spiralnie t

38 a= c t c t c t t 0 < a < 1 odpychający schodkowo 1 < a < 2 przyciągający schodkowo 2 < a < 3 przyciągający spiralnie 3 < a < 4 odpychający spiralnie

39 a=3.5 c t c t c t 1 < a < a 3 < a a < 1 < < t odpychający schodkowo przyciągający schodkowo przyciągający spiralnie odpychający spiralnie

40 a=4 c t c t c t Chaos deterministyczny: mieszanie w przestrzeni fazowej Nieregularna trajektoria wrażliwość na warunki początkowe t

41 Drzewo podwajania okresu,diagram Feigenbauma, diagram bifurkacyjny c = 0, c = a 1 a 0 2 c = a 1 a 1 < a < 3 < a a < 1 a < < odp przyc przyc odp (c) 2017 Zuzanna Jędrzejewska Matematyka Stosowana

42 Okienka okresowe 3.828,3.857 (c) 2017 Dawid Szarek Matematyka Stosowana

43 Intermitencje, EX: a = 3.828, c 0 = 0.5 przełączanie pomiędzy fazami cyklicznymi i chaosem

44 Iteracja równania logistycznego koncentracja początkowa liczba iteracji function[c,t]=logist(c0,a,n) t=0:1:n; c t + 1 = ac t ( 1 c t ) c(1)=c0; for i=1:n c(i+1)=a*c(i)*(1-c(i)); end

45 Diagram Feigenbauma for i=1:1000 a=0.004*i; n=500; [c,t]=log(0.1,a,n); x=ones(100,1)*a; plot(x,c(n-99:n),'.'); hold on; end function[c,t]=log(c0,a,n) t=0:1:n; c(1)=c0; for i=1:n c(i+1)=a*c(i)*(1-c(i)); end

46 Opady deszczu

47 Konwekcja (c) (c) Gorące powietrze unosi się do góry chmury burzowe powstają w wyniku konwekcji 1962, Saltzman równania dla prostej konwekcji

48 Model pogody wg. Lorenza Edward Lorenz, MIT w 1961 (w wieku 44 lat) Przypadek a może lenistwo? Odkrycie małe zmiany warunków początkowych prowadzą do zupełnie innych prognoz pogody. Punkt wyjścia uproszczone równania konwekcji

49 Układ Równań Lorenza jeszcze więcej uproszczeń dx dt dy dt dz dt = σ ( y x) = α x y xz = xy β z σ α β = = = Wielkości wybrane przez Saltzmana

50 Lenistwo Lorenza i jego Królewska Pszczoła x t

51 Narysujmy to w przestrzeni

52 Cechy atraktora Lorenza Trajektorie są przyciągane przez ograniczony obszar przestrzeni fazowej Ruch jest nieregularny Wrażliwość na warunki początkowe (sekwencja pętli) Ten atraktor jest dziwny!

53 atraktor Roesslera (1976) x' = ( y + z) y' = x + ay z' = b + xz cz a = 0.2, b = 0.2, c = 5.7

54 Wzorzec chaosu wyrabianie ciasta rozciąganie składanie

55 Gdzie są rodzynki? Odległość rośnie wykładniczo

56 Chaos i losowość Data: Dr. C. Ting Który z tych szeregów czasowych jest chaotyczny, a który losowy?

57 Mapa powrotów prawdę ci powie: x(t+1)od x(t) Odwzorowanie Henona x n+1 = x 2 n y n y n+1 = x n Biały szum

58 Pomyśl o tym

59 Ćwiczenie: Drgania tłumione Opór powietrza, wody itd. tłumi oscylacje Załóżmy, że siła oporu: F x = bv x = b dd dd II zasada dynamiki: ma x = bv x kk m d2 x dd = b dt2 dd kk mx + bx + kk = 0 x + b m x + k m x = 0 x + 2βx + ω 0 2 x = 0

60 Ćwiczenie: Drgania tłumione Rozwiąż równanie: mx + 2βx + ω 0 2 x = 0 Rozwiązania szukaj w postaci: x t = e αα Otrzymasz rozwiązanie: x t = C 1 e α 1t + C 2 e α 2t, gdzie α 1,2 = β ± β 2 ω 0 2 x t = e ββ C 1 e β2 ω 0 2 t + C2 e β2 ω 0 2 t

61 Ćwiczenie: Drgania tłumione x t = e ββ C 1 e β2 ω 0 2 t + C2 e β2 ω 0 2 t Drgania nietłumione: β = 0 x t = C 1 e ω 0 2 t + C2 e ω 0 2 t = C 1 e i ω 0 2 t + C2 e i ω 0 2 t = C1 e iω 0t + C 2 e iω 0t

62 Ćwiczenie: Drgania tłumione x t = e ββ C 1 e β2 ω 2 0 t + C2 e β2 ω 2 0 t Drgania słabo tłumione β < ω 0 β 2 ω 2 0 < 0 x t = e ββ C 1 e i ω 0 2 β 2 t + C2 e i ω 0 2 β 2 t x t = e ββ C 1 e iω1t + C 2 e iω1t, ω 1 = ω 2 0 β 2 Drgania krytyczne β = ω 0 x t = C 1 e ββ + C 2 te ββ

63 W zależności od tłumienia β/ω 0 x t = e ββ C 1 e β2 ω 0 2 t + C2 e β2 ω 0 2 t Małe tłumienie (a) Krytyczne tłumienie (b) Silne tłumienie (c)

64 Drgania wymuszone mx + bx + kx = F t x + 2βx + ω 0 x = f t Siła okresowa wymuszająca: f t = f 0 cos ωω Rachunek bardziej skomplikowany patrz Taylor Częstość drgań własnych ω 0 = k m Częstość z tłumieniem ω 1 = ω 0 2 β 2 Częstość rezonansowa ω = ω 2 = ω 0 2 2β 2 ω 0

65 Drgania wymuszone i rezonans Drgania swobodne przykłady? Drgania wymuszone Amplituda drgań małe tłumienie Częstość siły wymuszającej/częstość własna

66 Równania różniczkowe rzędu pierwszego Równanie różniczkowe liniowe rzędu pierwszego dd dd + p x y = f(x), p x, f(x) funkcje ciągłe na przedziale a, b : jednorodne: f x = 0 niejednorodne: f x 0 Rozwiązanie równania jednorodnego dd dd dd + p x y = 0 = p x y = p x dd dd dd y ln y = P x + lll y = Cexp( P(x)) P x - funkcja pierwotna p x

67 Dlaczego ω to częstość? x 0 = A, v 0 = 0 x t = Acos (ωω) x t = x t + T, T to okres cos ωω = cos ω t + T z własności cosinusa: cos ωω = cos (ωω + 2π) cos ωω + 2π = cos( ωω + ωω) 2π = ωω ω = 2π T = 2ππ Częstość (liczba okresów w 1s) oznaczana: f lub ν

68 Wahadło matematyczne i sprężyna: okres, położenie, prędkość i energia Restnik Halliday Walker

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ

Bardziej szczegółowo

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. F = 0 a = 0 (definicja układu inercjalnego) 2. F

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Siła sprężystości - przypomnienie

Siła sprężystości - przypomnienie Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)

Bardziej szczegółowo

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy, Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż. Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad 8 017/018, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia

Bardziej szczegółowo

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA

Bardziej szczegółowo

Wykład 6 Drgania. Siła harmoniczna

Wykład 6 Drgania. Siła harmoniczna Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad 10 015/016, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne ODE: ordinary differential equations Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 RÓWNANIA RÓŻNICZKOWE JEDNEJ ZMIENNEJ Motywacja Rozwiązania równań z 1, 2 lub

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Wykład 2: Od drgań do fali Katarzyna Weron. WPPT, Matematyka Stosowana

Wykład 2: Od drgań do fali Katarzyna Weron. WPPT, Matematyka Stosowana Wykład 2: Od drgań do fali Katarzyna Weron WPPT, Mateatyka Stosowana Drgania układów o dwóch stopniach swobody k κ k Równania Newtona: Dodaj równania: x 1 x 2 (x 1 + x 2 ) = k(x 1 +x 2 ) x 1 = kx 1 κ x

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

Wykład 3 Ruch drgający Ruch falowy

Wykład 3 Ruch drgający Ruch falowy Wykład 3 Ruch drgający Ruch falowy Dr Henryk Jankowski 2010/2011 WIMIR_studia niestacjonarne Mechanika Analityczna Czasoprzestrzeń zasada składania ruchów Galileo Galilei (1564-1642) - "Dialogi" (Florencja,

Bardziej szczegółowo

Podręcznik. Przykład 1: Wyborcy

Podręcznik. Przykład 1: Wyborcy MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

ver b drgania harmoniczne

ver b drgania harmoniczne ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona, Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.

Bardziej szczegółowo

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================

Bardziej szczegółowo

Co to są równania ruchu? Jak je całkować?

Co to są równania ruchu? Jak je całkować? Co to są równania ruchu? Jak je całkować? Maria Przybylska CA UMK 10.03.2010 M. Przybylska (CA UMK) Ruch i całki 10.03.2010 1 / 29 Ruch ciała i jego opis Problemy co to jest ruch: zmiana położenia ciała

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana Wykład 3: Jak wygląda dźwięk? Katarzyna Weron Matematyka Stosowana Fala dźwiękowa Podłużna fala rozchodząca się w ośrodku Powietrzu Wodzie Ciele stałym (słyszycie czasem sąsiadów?) Prędkość dźwięku: stal

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).

D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta). D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa

Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa Arkadiusz Neubauer IV rok, Fizyka z Informatyką. Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa 1 Problem fizyczny W poniższej pracy przedstawiono numeryczną metodę obliczania widma Lapunowa

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Chaos w układach dynamicznych: miary i kryteria chaosu

Chaos w układach dynamicznych: miary i kryteria chaosu : miary i kryteria chaosu Uniwersytet Śląski w Katowicach, Wydział Matematyki, Fizyki i Chemii 27.08.14 : miary i kryteria chaosu Temat tego referatu jest związany z teorią układów dynamicznych która ma

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

1.1 Oscylator harmoniczny prosty

1.1 Oscylator harmoniczny prosty 1 Wstęp 1.1 Oscylator harmoniczny prosty Oscylator harmoniczny prosty jest to każdy układ, którego ruch opisuje funkcja będąca rozwiązaniem równania różniczkowego postaci: d x(t) dt + ω 0x(t) = 0 (1) Rysunek

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo