Drgania wymuszone - wahadło Pohla
|
|
- Wanda Żukowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania wymuszone, stosunek tłumienie/dekrement, stała tłumienia, logarytmiczny dekrement tłumienia, przypadek aperiodyczny, pełzanie. Podstawy Dla układu wykonującego drgania swobodne zaobserwowano, że kolejne zmniejszenie maksymalnej amplitudy silnie zależy od tłumienia. Jeśli drgania układu są stymulowane okresowo przez zewnętrzny moment siły, obserwujemy, że w stanie stacjonarnym amplituda jest funkcją jego częstotliwości i amplitudy oraz tłumienia. Wyznaczymy częstotliwości charakterystyczne drgań swobodnych oraz krzywe rezonansu wymuszonego dla różnych wartości tłumienia. Wyposażenie 1 Wahadło skrętne Pohla Transformator regulowany, 25 V AC / 20 V DC, 12 A Mostek prostowniczy, 30 V AC/1 A DC Stoper, cyfrowy, 1/100 sek Multimetr cyfrowy Przewód, l = 250 mm, żółty Przewód, l = 750 mm, czerwony Przewód, l = 750 mm, niebieski Rys. 1: Przygotowanie doświadczenia 1
2 Zadania A. Drgania swobodne 1. Ustal okres i częstotliwość charakterystyczną drgań nietłumionych. 2. Wyznacz okres i odpowiadającą mu częstotliwości charakterystyczne drgań o różnych wartościach tłumienia. Oblicz odpowiednie współczynniki, stałe i logarytmiczne dekrementy tłumienia. 3. Zbadaj przypadki aperiodyczne i pełzanie. B. drgania wymuszone 1. Wyznacz krzywe rezonansowe i przedstaw je graficznie korzystając z wartości tłumienia A. Wyznacz odpowiednie częstotliwości rezonansowe i porównaj je z wartościami częstotliwości rezonansowej wyznaczonymi wcześniej. 2. Obserwuj przesunięcie fazowe pomiędzy ruchem wahadła skrętnego i zewnętrznym momentem wymuszającym, dla małego tłumienia i dla różnych wartości częstotliwości wymuszającej. Rys. 2: Schemat połączeń elektrycznych. Przygotowanie doświadczenia Eksperyment należy przygotować zgodnie z Rysunkami 1 i 2. Do wyjścia prądu stałego (DC) zasilacza podłączamy hamulec indukcyjny (prąd wirowy). Również silnik wymaga napięcia stałego, dlatego pomiędzy wyjściem AC zasilacza (12 V) Rys. 3. Podłączenie silnika prądu stałego do zasilacza i obu gniazdami silnika prądu stałego umieszczony jest prostownik (patrz Rysunek 3). Natężenie prądu stałego dostarczanego do prądów hamulca indukcyjnego IB, jest regulowane za pomocą pokrętła regulacyjnego zasilacza i wskazywane przez amperomierz. Wykonanie doświadczenia A. Drgania swobodne 1. Ustal okres i częstotliwość charakterystyczną drgań nietłumionych. Aby wyznaczyć częstotliwość charakterystyczną ω0 wahadła skrętnego bez tłumienia (IB = 0), odchyl wahadło całkowicie na bok zmierz czas kilku drgań. Pomiar należy powtórzyć kilkukrotnie, potem należy wyznaczyć wartość średnią okresu T 0. 2
3 1. Wyznacz okres i odpowiadającą mu częstotliwości charakterystyczne drgań o różnych wartościach tłumienia. W ten sam sposób wyznacz częstotliwości charakterystyczne z tłumieniem drgań korzystając użyciu z następujących natężeń prądów wirowych dla hamulca: I B ~0,25 A, (U ~ = 4 V) I B ~0,40 A, (U ~ = 6 V) I B ~0,55 A, (U ~ = 8 V) I B ~0,9 A, (U ~ = 12 V) W celu wyznaczenia wartości tłumienia dla Rys. 4: Wahadło ze wskazówką w położeniu zerowym wyżej wymienionych przypadków zmierz jednokierunkowe maksymalne amplitudy w następujący sposób: odchyl wahadło całkowicie na bok obserwuj wielkość kolejnych amplitud po stronie drugiej. Najpierw należy upewnić się, że wskazówka wahadła w spoczynku zbiega się z zerem na skali (patrz Rysunek 4). Regulacji można dokonać, obracając mimośrodową płytką silnika. 3. Zbadaj przypadki aperiodyczne i pełzanie. Aby zbadać przypadek aperiodyczny (IB ~ 2,0 A) i przypadek pełzania (I0 ~ 2,3 A) natężenie prądu wirowego na krótko przekracza 2,0 A. Uwaga: Nie używaj natężenia prądu wirowego powyżej 2,0 A na więcej niż kilka minut. B. drgania wymuszone Aby stymulować ruch wahadła skrętnego, pręt łączący silnika przymocuj przy jednej trzeciej wysokości źródła. Częstotliwość wymuszania ωa silnika można wyznaczyć za pomocą stopera, licząc ilość obrotów (na przykład mierząc czas 10 obrotów). 1. Wyznacz krzywe rezonansowe i przedstaw je graficznie korzystając z wartości tłumienia A. Pomiar zaczynamy od małych częstotliwości stymulujących ωa. ωa zwiększamy korzystając z zgrubnego potencjometru silnika. Po ustawieniu z grubsza maksymalnej wartości ωa, zmieniaj wartość w małych krokach za pomocą potencjometru dokładnego (patrz Rysunek 5). W każdym przypadku, odczyty powinny być wykonywane wyłącznie po ustabilizowaniu Rys. 5: Pokrętła sterujące silnika. Górne pokrętło: z grubsza ; dolne pokrętło: na dokładnie. amplitudy drgań wahadła. W przypadku braku tłumienia lub przy bardzo małych wartościach tłumienia, ωa musi być wybrane w taki sposób, aby wahadło nie przekraczał zakresu na skali. 3
4 2. Obserwuj przesunięcie fazowe pomiędzy ruchem wahadła skrętnego i zewnętrznym momentem wymuszającym, dla małego tłumienia i dla różnych wartości częstotliwości wymuszającej. Wybierz niewielką wartość tłumienia wahadła i stymuluj najpierw z częstotliwością ωa znacznie poniżej częstotliwości rezonansowej, a potem znacznie powyżej niej. Obserwuj odpowiednie przesunięcia fazowe między ruchem wahadła skrętnego i zewnętrznym momentem wymuszającym. W każdym przypadku, odczyty powinny być wykonywane wyłącznie po ustabilizowaniu amplitudy drgań wahadła. Teoria i analiza wyników A. Nietłumione i tłumione drgania swobodne Teoria W przypadku swobodnych i tłumionych drgań skrętnych momenty M1 (sprężyna spiralna) i M2 (hamulec indukcyjny) działających na wahadło, mamy: Φ = kąt obrotu M 1 = D 0 Φ i M 2 = CΦ Φ = prędkość kątowa D 0 = moment siły na jednostkę kąta C = współczynnik proporcjonalności zależny od natężenia prądu, który zasila hamulec indukcyjny (na prądy wirowe) Wypadkowy moment siły M = D 0 Φ CΦ prowadzi do uzyskania następującego równania ruchu: IΦ + CΦ + D 0 Φ = 0 (1) I = moment bezwładności wahadła Φ = przyspieszenie kątowe Dzieląc równanie (1) przez I i wprowadzając oznaczenia: δ = C 2I i ω 0 2 = D0 I uzyskamy δ nazywamy stałą tłumienia, a ω 0 = D0 I Φ + 2δΦ + ω 0 2 Φ = 0 (2) częstotliwością charakterystyczną systemu nietłumionego. 4
5 Rozwiązaniem równania różniczkowego (2) jest funkcja: z Φ(t) = Φ 0 e δt cos ωt (3) ω = ω 0 2 δ 2 (4) Analiza wyników Zadanie A1: Średnia wartość okresu T 0 i odpowiadająca mu częstotliwość ω 0 swobodnych i nietłumionych drgań wahadła skrętnego jest następująca: T 0 = (1,817 ± 0,017)sek; T 0 = ±1% T 0 i ω 0 = (3,46 ± 0,03)sek 1 Zadanie A2: Sporządzić wykres zależności kolejnych jednokierunkowych maksimów amplitudy od czasu. Odpowiedni czas obliczamy korzystając z częstotliwości. Rysunek 6 przedstawia przykładowy wykres. Odpowiednie współczynniki tłumienia, stałe tłumienia K i logarytmiczny dekrement tłumienia Λ, oblicza się w następujący sposób: Rys. 6. Zależność wartości jednokierunkowych maksimów amplitudy od czasu dla różnych tłumień 5
6 Z równania (3) wynika, że amplituda Φ(t) drgań tłumionych zmniejszyła się e-razy względem wartości pierwotnej Φ 0 po upływie czasu t = 1 δ. Ponadto z równania (3) wynika, że stosunek dwóch kolejnych amplitud jest stały: Φ n Φ n+1 = K = e δt (5) K jest nazywany współczynnikiem tłumienia, T = okresem drgań, a wartość: Λ = ln K = δt = ln Φ n Φ n+1 (6) to logarytmiczny dekrement tłumienia. Przykładowe wyniki dla charakterystycznych wartości tłumienia: Tabela 1 Zadanie A3: Równanie (4) posiada rzeczywiste rozwiązanie tylko gdy ω 2 0 δ 2. Dla ω 2 0 = δ 2, wahadło powraca w jak najkrótszym czasie do swojego położenia wyjściowego - bez oscylacji (przypadek aperiodyczny). Dla ω 2 0 < δ 2 wahadło powraca asymptotycznie do położenia początkowego (pełzanie). B. Drgania wymuszone Teoria Jeśli wahadło jest poddane okresowemu momentowi siły M a = M 0 cos ω a t, równanie (2) zmienia się następująco: Φ + 2δΦ + ω 0 2 Φ = F 0 cos ω a t (7) gdzie F 0 = M 0 I W stanie równowagi, rozwiązanie tego równania różniczkowego jest następujące: gdzie: Φ(t) = Φ a cos(ω a t α) (8) Φ a = Φ 0 {1 [ ω a ω ] 2 2 } + [2 δ 2 ω a 0 ω 0 ω ] 0 (9) 6
7 i Φ a = F 0 ω 0 2 Ponadto: tg α = 2δω a ω 0 2 ω a 2 Odpowiednio: α = arc tan 2δω a ω 2 0 ω2 (10) a Analiza wyników Zadanie B1: Rysunek 7 przedstawia krzywe rezonansowe dla różnych tłumień. Analiza równania (9) potwierdza wyniki uzyskane na Rysunku 7: 1. Większa F 0, większe Φ a Rys. 7: Krzywe rezonansowe dla różnych tłumień. 7
8 2. Dla ustalonej wartości F 0 mamy: 3. Większe δ, mniejsze Φ a 4. Dla δ = 0 znajdziemy: Φ Φ max dla ω a ω 0 Φ jeśli ω a = ω 0 Z analizy krzywych na Rysunku 7 wynika, że dla tego przykładu średnia częstotliwość rezonansowa ω = 3,41s 1 jest bardzo zbliżona do częstotliwości rezonansowej wyznaczonej w Zadaniu A1. Zadanie B2: Rysunek 8 przedstawia różnicę faz drgań wymuszonych w funkcji częstotliwości stymulującej zgodnie z Równaniem 10. W przypadku bardzo małych częstotliwości ω a różnica faz jest w przybliżeniu zerowa, to znaczy wahadło i moment stymulacji są w tej samej fazie. Jeśli ω a jest znacznie większa niż ω 0, wahadło i stymulacja są niemal w fazach przeciwnych. Im mniejsze tłumienie, tym szybciej dochodzi do przejścia od drgań w tej samej fazie do drgań w fazach przeciwnych. Rys. 8: Przesunięcie fazy dla drgań wymuszonych dla różnego tłumienia. 8
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
LABORATORIUM Z FIZYKI TECHNICZNEJ Ć W I C Z E N I E N R 1 BADANIE DRGAŃ WAHADŁO POHLA
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.04.01.01-00-59/08 INSTYTUT FIZYKI WYDZIAŁ
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
BADANIE DRGAŃ TŁUMIONYCH I WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 13 BADANIE DRGAŃ TŁUMIONYCH I WYMUSZONYCH PRZY POMOCY WAHADŁA POHLA 1. Cel ćwiczenia Celem ćwiczenia jest doświadczalne przybliżenie
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.
Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Badanie efektu Dopplera metodą fali ultradźwiękowej
Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM
WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne
Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
POMIARY OSCYLOSKOPOWE
Ćwiczenie 51 E. Popko POMIARY OSCYLOSKOPOWE Cel ćwiczenia: wykonanie pomiarów wielkości elektrycznych charakteryzują-cych przebiegi przemienne. Zagadnienia: prąd przemienny, składanie drgań, pomiar amplitudy,
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad 8 017/018, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała
1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)
Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad 10 015/016, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY
ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
7 Dodatek II Ogólna teoria prądu przemiennego
7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku
Wzmacniacz operacyjny
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania
Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m
Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
TEORIA DRGAŃ Program wykładu 2016
TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:
Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
1.2 Badanie drgań tłumionych wahadła torsyjnego(m19)
Badanie drgań tłumionych wahadła torsyjnego(m19) 15 1.2 Badanie drgań tłumionych wahadła torsyjnego(m19) Celem ćwiczenia jest badanie małych drgań swobodnych i tłumionych wahadła torsyjnego oraz wyznaczenie
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:
Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu
LABORATORIUM ELEKTRONIKI OBWODY REZONANSOWE
ZESPÓŁ ABORATORIÓW TEEMATYKI TRANSPORTU ZAKŁAD TEEKOMUNIKAJI W TRANSPORIE WYDZIAŁ TRANSPORTU POITEHNIKI WARSZAWSKIEJ ABORATORIUM EEKTRONIKI INSTRUKJA DO ĆWIZENIA NR OBWODY REZONANSOWE DO UŻYTKU WEWNĘTRZNEGO
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Pracownia Elektrotechniki
BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni i sprawności transformatora.
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika
DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Badania doświadczalne drgań własnych nietłumionych i tłumionych
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badania
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania
dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA
NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński
Rozszerzalność cieplna ciał stałych
Zagadnienia powiązane Rozszerzalność liniowa, rozszerzalność objętościowa cieczy, pojemność cieplna, odkształcenia sieci krystalicznej, rozstaw położeń równowagi, parametr Grüneisena. Podstawy Zbadamy
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.
espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych
Materiały pomocnicze do egzaminu Dynamika Systemów Elektromechanicznych Studia Magisterskie IIgo stopnia Specjalności: PTiB, EiNE, APiAB, Rok I Opracował: dr hab. inż. Wiesław Jażdżynski, prof.nz.agh Kraków,
PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE
PRACOWNA FZYCZNA DLA UCZNÓW WAHADŁA SPRZĘŻONE W ćwiczeniu badać będziemy drgania dwóch wahadeł sprzężonych za pomocą sprężyny. Wahadła są jednakowe (mają ten sam moment bezwładności, tę samą masę m i tę
Co się stanie, gdy połączymy szeregowo dwie żarówki?
Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu
E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu Obowiązujące zagadnienia teoretyczne: INSTRUKACJA WYKONANIA ZADANIA 1. Pojemność elektryczna, indukcyjność 2. Kondensator, cewka 3. Wielkości opisujące
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora
BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC
BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych
Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )
Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
NIEZBĘDNY SPRZĘT LABORATORYJNY
Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów
Badanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Nr zadania PUNKTOWANE ELEMENTY ODPOWIEDZI.1 Za czynność Podanie nazwy przemiany (AB przemiana izochoryczna) Podanie nazwy przemiany (BC
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
E107. Bezpromieniste sprzężenie obwodów RLC
E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie