UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH"

Transkrypt

1 Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

2 Postać układu równań liniowych Układ liniowych równań algebraicznych można zapisać w postaci: a 11 x 1 + a 12 x 2 + a 13 x a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x a 2n x n = b a n1 x 1 + a n2 x 2 + a n3 x a nn x n = b n n a ij x j = b j, dla i = 1, 2,..., n. j=1 A X = B. gdzie A jest nieosobliwą, kwadratową macierzą o wymiarze n n, B jest wektorem o n współrzędnych, X jest wektorem poszukiwanym o n współrzędnych.

3 Wzory Cramera Jeśli wyznacznik D = det(a) 0, co oznacza, że układ równań liniowych (URL) ma jedno rozwiązanie, to poszukiwany wektor X można uzyskać za pomocą wzorów Cramera: Przykład: Rozwiązanie x 1 = D 1 D, x 2 = D 2 D,..., x n = D n D. [ ] [ x1 x 2 ] [ = D = 41, D 1 = 123, D 1 = [ x1 ] ] [ ] 3 = x 2 1 Stosowanie takich wzorów wymaga obliczenia n + 1 wyznaczników. Z powodu wielkiej liczby działań nie stosujemy wzorów Cramera nawet dla układów niskiego stopnia.

4 Metody do rozwiązania URL Metody służące do rozwiązania układu równań AX = B można podzielić na: 1 metody dokładne, 2 metody iteracyjne (przybliżone). Decyzja wyboru odpowiedniej metody zależy od postaci macierzy A, specyfiki zagadnienia, które prezentuje układ. Układy równań liniowych mogą mieć: 1 jedno rozwiązanie 2 nieskończenie wiele rozwiązań 3 brak rozwiązań (układy sprzeczne)

5 Metody dokładne Przez metodę dokładną rozwiązywania układu równań liniowych rozumiemy metodę, która (przy braku błędów zaokrągleń) daje dokładne rozwiązanie po skończonej liczbie kroków. Metody dokładne, które będą omówione to: 1 podstawianie w przód i podstawianie wstecz dla układów trójkątnych 2 metoda eliminacji Gaussa 3 metoda Gaussa-Jordana 4 metoda Choleskiego-Banachiewicza

6 Układy trójkątne Układy trójkątne Macierz trójkątna górna Układy liniowe, których macierz jest trójkątna, rozwiązuje się szczególnie łatwo. Układ AX = B z macierzą A U trójkątną górną ma postać: u 11 x 1 + u 12 x u 1n 1 x n 1 + u 1n x n = b 1 u 22 x u 2n 1 x n 1 + u 2n x n = b u n 1n 1 x n 1 + u n 1n x n = b n 1 u nn x n = b n Jeżeli założymy, że u ii 0 (i = 1, 2,..., n), to niewiadome można obliczyć w kolejności x n, x n 1, x n 2,..., x 1, z wzorów: x n = b n u nn, x n 1 = b n 1 u n 1n x n u n 1 n 1,..., x 1 = b 1 u 1n x n u 1n 1 x n 1... u 12 x 2 u 11.

7 Układy trójkątne Układy trójkątne Macierz trójkątna górna i dolna Dla macierzy trójkątnej górnej wzory te można napisać w postaci: x i = b i n u ij x j j=i+1 u ii dla i = n, n 1,..., 1. Ponieważ niewiadome wyznacza się w kolejności od ostatniej do pierwszej, ten algorytm nazywa się podstawianiem wstecz. Układ równań AX = B z macierzą A L trójkątną dolną można rozwiązać podobnie. Przyjmując, że l ii 0 (i = 1, 2,..., n), można wyznaczać niewiadome za pomocą podstawiania w przód: x i = b i i 1 l ij x j j=1 l ii dla i = 1, 2,..., n.

8 Układy trójkątne Układy trójkątne Przykład Rozwiązać układ liniowych równań AX = B, gdzie: A = 0 4 8, B = równanie: n = 3 x n = b n /a nn x 3 = b 3 /a 33 = 1 n 3 równanie: i = 2 s = a ij x j s = a 2j x j = a 23 x 3 = 8 j=i+1 j=2+1 x i = (b i s)/a ii x 2 = (b 2 8)/a 22 = 2 n 3 równanie: i = 1 s = a ij x j s = a 1j x j = a 12 x 2 + a 13 x 3 = 2 j=i+1 j=1+1. x i = (b i s)/a ii x 1 = (b 1 2)/a 11 = 1 Rozwiązanie: X = [ 1, 2, 1 ] T

9 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Podstawową metodą dokładną rozwiązywania dowolnych układów równań liniowych jest metoda eliminacji Gaussa. Pomysł polega na eliminacji niewiadomych w pewien systematyczny sposób doprowadzając macierz do postaci trójkątnej. Taki układ trójkątny już potrafimy rozwiązać. 1 Efektywna metoda rozwiązywania układów równań liniowych. 2 Wymaga w przybliżeniu n 3 /3 mnożeń, np. dla n = 10 daje to 333 operacje mnożenia. 3 Dla porównania: metoda Cramera wymaga około 2(n + 1)! mnożeń, co dla n = 10 daje mnożeń.

10 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Rozważmy układ równań: lub A X = B a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x a (1) 1n x n = b (1) 1 a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x a (1) 2n x n = b (1) a (1) n1 x 1 + a (1) n2 x 2 + a (1) n3 x a nn (1) x n = b n (1) Górny indeks (1) oznacza dany układ równań wyjściowy do obliczeń. Metoda eliminacji Gaussa polega na wykonaniu dwóch etapów obliczeń: I. eliminacji w przód II. podstawianiu wstecz

11 Metoda eliminacji Gaussa Etap I {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 / ( a21 a 11 ) + {2r} {2r} a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x 3 = b (1) 2 {3r} a (1) 31 x 1 + a (1) 32 x 2 + a (1) 33 x 3 = b (1) 3 Załóżmy teraz, że a Wówczas z ostatnich 2 równań możemy wyeliminować x 1 odejmując od i tego równania pierwsze pomnożone przez: m i1 = a i1 a 11 dla i = 2 Przekształcone równania przybierają postać: {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 23 x 3 = b (2) 2 {3r} a (1) 31 x 1 + a (1) 32 x 2 + a (1) 33 x 3 = b (1) 3

12 Metoda eliminacji Gaussa Etap I {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 / ( a31 a 11 ) + {3r} {2r} a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x 3 = b (1) 2 {3r} a (1) 31 x 1 + a (1) 32 x 2 + a (1) 33 x 3 = b (1) 3 Załóżmy teraz, że a Wówczas z ostatnich 2 równań możemy wyeliminować x 1 odejmując od i tego równania pierwsze pomnożone przez: m i1 = a i1 a 11 dla i = 3 Przekształcone równania przybierają postać: {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 32 x 3 = b (2) 2 {3r} a (2) 23 x 3 + a (2) 33 x 3 = b (2) 3

13 Metoda eliminacji Gaussa Etap I {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 23 x 3 = b (2) 2 / ( a32 a 22 ) + {3r} {3r} a (2) 32 x 3 + a (2) 33 x 3 = b (2) 3 Ostatecznie przekształcony układ równań ma postać: {1r} a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x 3 = b (1) 1 {2r} a (2) 22 x 2 + a (2) 23 x 3 = b (2) 2 {3r} + a (3) 33 x 3 = b (3) 3 a więc układ trójkątny, który rozwiązujemy w Etapie II stosując podstawianie wstecz.

14 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Eliminację wykonuje się w n 1 krokach o numerach k = 1, 2, 3,..., n 1. W k tym kroku elementy a (k) ij dla j, j > k przekształca się wg wzorów: a (k+1) ij = a (k) ij m ik a (k) kj b (k+1) i = b (k) i m ik b (k) k gdzie m ik = a(k) ik a (k) kk dla: i = k + 1, k + 2,..., n; j = k + 1, k + 2,..., n.

15 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = 2 8 2, B = Etap I : krok k = 1; wiersz i = 1 [2, 4, 10] [4] wiersz i = 2, m 21 = a 21 /a 11 = 1 [ 2 8 2] [12] [ ] [ 4] = [0 4 8] [16] wiersz i = 3, m 31 = a 31 /a 11 = 0.5 [1 1 9] [12] [1 2 5] [2] = [0 3 4] [10].

16 Metoda eliminacji Gaussa Metoda eliminacji Gaussa Przykład A = B = krok k = 2 wiersz i = 2 [0, 4, 8] [16] wiersz i = 3, m 32 = a 32 /a 22 = 0.75 A = [0 3 4] [10] [0 3 6] [12] = [0 0 2] [ 2] B = Etap II (podstawianie wstecz) przykład dla układów trójkątnych.

17 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Układ równań o postaci: a (1) 11 x 1 + a (1) 12 x 2 + a (1) 13 x a (1) 1n x n = b (1) 1 a (1) 21 x 1 + a (1) 22 x 2 + a (1) 23 x a (1) 2n x n = b (1) a (1) n1 x 1 + a (1) n2 x 2 + a (1) n3 x a nn (1) x n = b n (1) Przekształcamy następująco: Pierwsze równanie dzielimy przez a (1) 11, a następnie od i tego wiersza, i = 2, 3,..., n, odejmujemy wiersz pierwszy pomnożony przez a (1) i1, otrzymując: x 1 + a (2) 12 x 2 + a (2) 13 x a (2) 1n x n = b (2) 1 a (2) 22 x 2 + a (2) 23 x a (2) 2n x n = b (2) a (2) n2 x 2 + a (2) n3 x a nn (2) x n = b n (2)

18 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Następnie drugie równanie dzielimy obustronnie przez a (2) 22 i od i tego wiersza, i = 1, 3,..., n, odejmujemy wiersz drugi pomnożony przez a (2) i2. x 1 + a (3) 13 x a (3) 1n x n = b (3) 1 x 2 + a (3) 23 x a (3) 2n x n = b (3) a (3) n3 x a nn (3) x n = b n (3) Po n 1 eliminacjach otrzymujemy układ postaci: czyli gotowe rozwiązanie. x 1 = b (n) 1 x 2 = b (n) 2 x n = b n (n)

19 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = 2 8 2, B = wiersz 1 [2, 4, 10] [4]/a 11 [1, 2, 5] [2] a) od wiersza 2 [ 2, 8, 2] [12] odejmujemy wiersz 1 [1, 2, 5] [2] a 21 = [ 2, 4, 10] [ 4] [0, 4, 8] [16] b) od wiersza 3 [1, 1, 9] [12] odejmujemy wiersz 1 [1, 2, 5] [2] a 31 = [1, 2, 5] [2] [0, 3, 4] [10]

20 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Przykład Po 1. eliminacji: A = B = wiersz 2 [0, 4, 8] [16]/a 22 [0, 1, 2] [4] a) od wiersza 1 [1, 2, 5] [2] odejmujemy wiersz 2 [0, 1, 2] [4] a 12 = [0, 2, 4] [ 8] [1, 0, 9] [10] b) od wiersza 3 [0, 3, 4] [10] odejmujemy wiersz 2 [0, 1, 2] [4] a 32 = [0, 3, 6] [12] [0, 0, 2] [ 2]

21 Metoda Gaussa-Jordana pełnej eliminacji Metoda Gaussa-Jordana Przykład Po 2. eliminacji: A = B = wiersz 3 [0, 0, 2] [ 2]/a 33 [0, 0, 1] [1] a) od wiersza 1 [1, 0, 9] [10] odejmujemy wiersz 3 [0, 0, 1] [1] a 13 = [0, 0, 9] [9] [1, 0, 0] [1] b) od wiersza 2 [0, 1, 2] [4] odejmujemy wiersz 3 [0, 0, 1] [1] a 23 = [0, 0, 2] [2] [0, 1, 0] [2] A = B = Po 3. eliminacji: wektor B stanowi rozwiązanie

22 Triangularyzacja metoda Choleskiego-Banachiewicza Rozkład LU W wielu zagadnieniach numerycznych celowym jest przedstawienie danej macierzy A w postaci iloczynu dwóch macierzy trójkątnych takich, aby A = L U. Procedura wyznaczenia tych macierzy nosi nazwę rozkładu LU. A = L U = l 11 l 21 l 22 l 31 l 32 l l n1 l n2 l n3... l nn u 11 u 12 u u 1n u 22 u u 2n u u 3n.... u nn Wtedy układ A X = B jest równoważny układowi L U X = B. Etapy rozwiązywania układu równań A X = B: I. Rozkład A = L U II. Rozwiązanie układu z macierzą dolnotrójkątną L Y = B Y (stosując podstawianie w przód) III. Rozwiązanie układu z macierzą górnotrójkątną U X = Y X (stosując podstawianie wstecz)

23 Triangularyzacja metoda Choleskiego-Banachiewicza Metody rozkładu trójkątnego Rozkład trójkątny nie jest jednoznaczny i można go realizować w różny sposób: 1 gdy l ii = 1 metodą Doolittle a, 2 gdy u ii = 1 metodą Crouta, 3 gdy u ii = l ii metodą Choleskiego-Banachiewicza. Rozkład L U można zrealizować: metodą Gaussa, traktując równość A = L U jako układ n 2 równań z n 2 niewiadomymi l ij dla i > j i niewiadomymi u ij dla i j. Równania te wygodnie rozwiązywać na przemian wierszami i kolumnami zgodnie z rysunkiem.

24 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Dla macierzy symetrycznych dodatnio określonych schematy zwarte są szczególnie atrakcyjne, gdyż wybór elementów głównych nie jest potrzebny. Zwykle przyjmuje się, że elementy przekątniowe w L są rzeczywiste i U = L T. A = L L T = l 11 l 21 l 22 l 31 l 32 l l n1 l n2 l n3... l nn l kk = (a kk k 1 lkp 2 ) l ik = p=1 gdzie: k = 1, 2,..., n; i = k + 1, k + 2,..., n. l 11 l 21 l l n1 l 22 l l n2 l l n3... l nn a ik k 1 l ip l kp p=1 l kk

25 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = , B = I. Wykonujemy rozkład A = L L T : = l l 21 l l 31 l 32 l (1 kolumna macierzy L) a 11 = l11 2 l 11 = 2 a 21 = l 21 l 11 l 21 = 8/2 = 4 a 31 = l 31 l 11 l 31 = 4/2 = = l l 32 l 33. l 11 l 21 l 31 0 l 22 l l l 22 l l 33

26 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Przykład = 4 l l 32 l l 22 l l (2 kolumna macierzy L) a 22 = l l 22 2 l 22 = = 1 a 32 = l 31 l 21 + l 32 l 22 l 32 = ( 1 + 8)/1 = = l l 33

27 Triangularyzacja metoda Choleskiego-Banachiewicza Metoda Choleskiego-Banachiewicza Przykład (3 kolumna macierzy L) = l l 33 a 33 = l l l 2 33 l 33 = = 2 II. L Y = B Y 6 Y = 7 2 (podstawianie w przód) L = III. U X = Y X 2 X = 0 1 (podstawianie wstecz)

28 Metody przybliżone Rozważane dotąd metody rozwiązywania układów równań liniowych są metodami bezpośrednimi, wymagającymi wykonania skończenie określonych działań. Metody iteracyjne w przeciwieństwie do tamtych startują z przybliżenia początkowego, które stopniowo się ulepsza (zmierza) aż do otrzymania dostatecznie dokładnego rozwiązania. Metody iteracyjne (przybliżone), które będą omówione to: 1 metoda Jacobiego 2 metoda Gaussa-Seidla

29 Metoda Jacobiego Metoda Jacobiego W metodzie Jacobiego (metoda iteracji prostej) tworzy się ciąg przybliżeń x (1), x (2),... według wzoru: x (k+1) i = n j=1,j i a ij x (k) j + b i a ii i = 1, 2,..., n. 1. Zbieżność procesu iteracyjnego zależy jedynie od właściwości macierzy A. 2. Metoda jest zbieżna gdy zachodzą nierówności: i 1 a ii > a ij, i = 1, 2,..., n, j i tj. jeśli wartości bezwzględne współczynników na przekątnej są dla każdego równania układu większe od sumy wartości bezwzględnych pozostałych współczynników tego równania. 3. Jako początkowe przybliżenie wybiera się często wektor x (0) = 0.

30 Metoda Jacobiego Metoda Jacobiego Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = 2 8 2, B = Jak widać macierz A nie spełnia warunków zbieżności procesu iteracyjnego..

31 Metoda Jacobiego Metoda Jacobiego Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = , B = Warunki zbieżności są spełnione 2. Przyjmujemy: a) początkowe przybliżenie x (0) = 0 b) kryterium przerwania procesu iteracyjnego: tempo zbieżności: ε 1 = x(k+1) x (k) < ε 1 x (k+1) dop wielkość residuum: ε 2 (k+1) = max x i 1 i<n ε 3 = A x(k+1) B A x (0) B. x (k) i < ε 2 dop < ε3 dop

32 Metoda Jacobiego Metoda Jacobiego Przykład x (k+1) i = 1. iteracja k = 0 dla x (0) = n j=1,j i a ij x (k) j + b i a ii i = 1, 2,..., n. x (1) 1 = (a 12 x (0) 2 + a 13 x (0) 3 b 1 )/a 11 = 1.3 x (1) 2 = (a 21 x (0) 1 + a 23 x (0) 3 b 2 )/a 22 = 1.4 x (1) 3 = (a 31 x (0) 1 + a 32 x (0) 2 b 3 )/a 33 = x (1) = oraz ε 1 = 1.0, ε 2 = 1.4, ε 3 = 0.36

33 Metoda Jacobiego Metoda Jacobiego Przykład 2. iteracja k = 1 x (1) = x (2) 1 = (a 12 x (1) 2 + a 13 x (1) 3 b 1 )/a 11 = 0.88 x (2) 2 = (a 21 x (1) 1 + a 23 x (1) 3 b 2 )/a 22 = 0.87 x (2) 3 = (a 31 x (1) 1 + a 32 x (1) 2 b 3 )/a 33 = 0.84 x (2) = oraz ε 1 = 0.59, ε 2 = 0.56, ε 3 = 0.13

34 Metoda Jacobiego Metoda Jacobiego Przykład 3. iteracja k = 8 x (9) = iteracja k = 15 x (16) = Rozwiązanie: otrzymano po wykonaniu 16 iteracji. oraz ε 1 = 1.25e 3, ε 2 = 5.05e 4, ε 3 = 3.28e 4 oraz ε 1 = 4.19e 7, ε 2 = 4.62e 7, ε 3 = 1.10e 7 x = x (16)

35 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Metoda Gaussa-Seidla stanowi pewną modyfikację metody iteracji prostej. Polega ona na tym, że przy obliczaniu przybliżenia (k + 1) niewiadomej x i, bierze się pod uwagę obliczone poprzednio przybliżenia (k + 1) niewiadomych x 1, x 2,..., x i 1. Iteracja odbywa się wg wzoru: x (k+1) i = i 1 j=1 a ij x (k+1) j n j=i+1 a ij x (k) j + b i a ii i = 1, 2,..., n. Podane poprzednio twierdzenia o zbieżności procesu iteracyjnego pozostają w mocy.

36 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład Rozwiązać układ liniowych równań A X = B, gdzie: A = , B = Warunki zbieżności są spełnione 2. Przyjmujemy: a) początkowe przybliżenie x (0) = 0 b) kryterium przerwania procesu iteracyjnego: tempo zbieżności: ε 1 = x(k+1) x (k) < ε 1 x (k+1) dop wielkość residuum: ε 2 (k+1) = max x i 1 i<n ε 3 = A x(k+1) B A x (0) B. x (k) i < ε 2 dop < ε3 dop

37 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład x (k+1) i = i 1 1. iteracja k = 0, j=1 a ij x (k+1) j n j=i+1 a ij x (k) j + b i a ii i = 1, 2,..., n. x (1) 1 = (a 12 x (0) 2 + a 13 x (0) 3 b 1 )/a 11 = 1.3 x (1) 2 = (a 21 x (1) 1 + a 13 x (0) 3 b 2 )/a 22 = 1.01 x (1) 3 = (a 31 x (1) 1 + a 32 x (1) 2 b 3 )/a 33 = dla x (0) = 0 0 x (1) = oraz ε 1 = 1.0, ε 2 = 1.3, ε 3 = 0.155

38 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład 2. iteracja k = 1 x (2) 1 = (a 12 x (1) 2 + a 13 x (1) 3 b 1 )/a 11 = x (2) 2 = (a 21 x (2) 1 + a 13 x (1) 3 b 2 )/a 22 = x (2) 3 = (a 31 x (2) 1 + a 32 x (2) 2 b 3 )/a 33 = dla x (1) = x (2) = oraz ε 1 = 0.173, ε 2 = , ε 3 = 2.096e 4

39 Metoda Gaussa-Seidla Metoda Gaussa-Seidla Przykład 3. iteracja k = 4 x (5) = Rozwiązanie x (5) 1 = (a 12 x (4) 2 + a 13 x (4) 3 b 1 )/a 11 = 1.0 x (5) 2 = (a 21 x (5) 1 + a 13 x (4) 3 b 2 )/a 22 = 1.0 x (5) 3 = (a 31 x (5) 1 + a 32 x (5) 2 b 3 )/a 33 = oraz ε 1 = 6.23e 7, ε 2 = 9.29e 7, ε 3 = 2.04e otrzymano po wykonaniu 5 iteracji. x = x (5)

40 Porównanie metod iteracyjnych Układ równań liniowych porównanie metod iteracyjnych Przykład Rozwiązać układ 2 liniowych równań A x = b metodami iteracyjnymi i porównać tempo zbieżności oraz wartości residuum. [ ] [ ] [ ] A =, B =, x (0) =. 0 ε 1 dop = ε3 dop = ε3 dop = Metoda Jacobiego Gaussa-Seidla Liczba kroków 6 4 x x ε e e-04 ε e e-04 ε e e-06

41 Porównanie metod iteracyjnych Ilustracja rozwiązania Jacobi Gauss-Seidel x x 1

42 Obliczanie macierzy odwrotnych Macierzą odwrotną macierzy kwadratowej A nazywamy macierz kwadratową A 1 spełniającą związek gdzie I jest macierzą jednostkową. Jeśli przyjmiemy, że X = A 1, to AX = I, czyli AA 1 = I, (1) Ax i = e i, i = 1, 2, n (2) gdzie x i i e i jest i tą kolumną odpowiednio w X i I. Tak więc kolumny macierzy A 1 są rozwiązaniami układów liniowych z prawymi stronami równymi kolumnom macierzy jednostkowej I.

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ

NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

Metody numeryczne II. Układy równań liniowych

Metody numeryczne II. Układy równań liniowych Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

Wykład III Układy równań liniowych i dekompozycje macierzy

Wykład III Układy równań liniowych i dekompozycje macierzy Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

A A A A A A A A A n n

A A A A A A A A A n n DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p.

Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p. Metody numeryczne Układy równań liniowych, część I Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-7.tex Metody numeryczne Janusz Szwabiński //2002 2:45 p./83 Układy równań liniowych, część I. Pojęcia

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Rozwiazywanie układów równań liniowych. Ax = b

Rozwiazywanie układów równań liniowych. Ax = b Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Pendolinem z równaniami, nierównościami i układami

Pendolinem z równaniami, nierównościami i układami Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3 3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie

Bardziej szczegółowo

Metoda eliminacji Gaussa

Metoda eliminacji Gaussa Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja

Bardziej szczegółowo

Macierze. Układy równań.

Macierze. Układy równań. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo